أملك الدرس ساعدوني بسرعة أرجوكم.

شكراا على الموضوع المفيد
العلوم الفيزيائية
شكراا على الموضوع المفيد
تمهيد ..
هناك كميات فيزيائية لا بد من معرفتها عند دراسة حركة الأجسام :
* المسافة Distance :
إذا تحركت سيارة في طريق مستقيم من الموقع ( أ ) الى الموقع ( ب ) فإن المسافة التي تكون قد قطعتها هي طول المسار المستقيم ( أ ب ) .
وإذا مشيت في مسار مقوس أو متعرج ( ذو زوايا متغيره ) ، يكون طول المسار الذي قطعته هو مقدار المسافة التي قطعتها .
وهكذا تعرف المسافة بين نقطتين بأنها :
طول المسار بينهما .
وتقاس المسافة بوحدات الطول
( متر ، سم ، كم ، …. )
” لاحظ أننا نعين المسافة بمقدارها فقط “
* الإزاحة :
تعرف الإزاحة بأنها :
المسار المستقيم الذي يقطعه الجسم في حركته من نقطه معينة الى النقطة الجديدة
ونرمز له بالحرف اليوناني ( دلتا ( ∆
يقاس مقدار الإزاحة بوحدات الطول أيضاً ( متر ، سم ، كم ، …. )
فلو أخذنا – مثلا – جسم يتحرك من نقطة ما ( x1 ) إلى (x2 )..
فإن إزاحة الجسم هي الفرق بين إحداثيات النقطتين
∆x = x2 – x1
المسافة هي كمية عددية ( قياسية ) تعبر عن طول الطريق الفعلي الذي سلكه الجسم و يمكن وصفها باستخدام رقم ووحدة فيزيائية ، في حين إن الإزاحة هي كمية متجهة تعبر عن بعد الجسم عن نقطة مرجعية ، ويمكن وصفها باستخدام رقم ووحدة فيزيائية واتجاه الإزاحة .
نقول أن الإزاحة هي الخط المستقيم الذي يصل بين نقطتي البداية ( أ ) والنهاية ( ب) .
ويمكن تمثيل الإزاحة بمتجه يتناسب طوله مع قيمة الإزاحة واتجاهه هو اتجاه إزاحته.
السرعه المتوسطه ..
يعرف متوسط السرعة (v ) بأنه :
نسبة الإزاحة إلى التغير في الزمن ( t ) الذي تمت فيه الإزاحة أي :
v=∆x/∆t
حيث : ∆x = x2 – x1
∆t = t2 – t1 ∆
لاحظ أن متوسط السرعة كمية متجهة ؛ ذلك لأن قسمة كمية متجهة على عدد يعطي كمية متجهة ، واتجاه متوسط السرعة هو اتجاه الإزاحة .
شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية .
و الأن أترككم مع
الموضوع
أتمنى ان ينال إعجابكم
و شكرا
2- الكميات المتجه Vector Quantities .
وهي الكميات التى يلزم لتعريفها مقدار ووحدة فيزيائية واتجاه .
ولا يتم تعريفها الا اذا اكتملت هذه العناصر .
ومن الامثلة على الكميات المتجهة : السرعة , القوة , التسارع و الازاحة .
فمثلاً إذا قلنا تحركت سيارة بسرعة 60 كم/ ساعة فقط , فهذا لايتم المعنى , لأن تحركها قد يكون شمالاً أو جنوباً أو في أي اتجاه , وفي كل حالة تكون النتيجة مختلفه.
وللتعامل مع هذه الكميات يتم استخدام تمثيل رياضي يسهل على الدارس التعامل مع هذه الكميات
تحليل المتجهات :
إذا اخترنا محاور متعامدة وأسمينا المحور الأفقي س ، والمحور الرأسي ص . ثم رسمنا المتجهة السابق ( ق ) في المستوى بين س ، ص بدءاً من نقطة الأصل .
بحيث هذا المتجه يصنع زاوية مقدارها 45 ْ مع محور السينات الموجب , ولنسميها ( q )
( أ جـ ) 2 = ( أ ب ) 2 + ( ب جـ ) 2
ق 2 = ( ق جا q ه) 2 = ( ق جا q ه) 2
ق 2 = ق 2 جا 2 q ه + ق 2 جتا 2 q ه
ق 2 = ق 2 ( جا 2 q ه + جتا 2 q ه )
ومن قانون المثلثات ( جا 2 q + جتا 2 q ه ) = 1
إذن ق 2 = ق 2 …. وهذا هو اثبات لنظرية فيثاغورس
والآن ق 2= ق 2 س + ق 2 ص
مثال 1 :
أوجد حاصل جمع المتجهين ق 1 ، ق 2
الحل :
1- نعيد الرسم وفق مقياس رسم مناسب كل 15 نيوتن يمثلها 1 سم على الرسم .
2- انقل ق 2 إلى اليمين ( حافظ على المقدار والاتجاه ) بحيث ينطبق ذيلها على رأس
3- المجموع ( ) يكون المتجه من ذيل المتجه الأول إلى رأس المتجهة الأخير .
4- نقيس قيمة ( ) بالمسطرة
= 7.5 سم
5- قيمة ( ) الحقيقية = 7.5 × 15 = 112.5 نيوتن .
ويمكن القول أن :
ح س = ق 1س + ق 2 س
ح ص = ق 1 ص + ق 2 ص
مثال : يتحرك سائق رالي 36 كم باتجاه الشرق , ثم 42 كم باتجاه الشمال . أخيراً 25 كم باتجاه الشمال الغربي . حدد بعده عن نقطه البداية .
ح س = ف 1 جتا q ه 1 + ف 2 جتا q ه 2 + ف 3 جتا q ه 3
ح س = 36 + صفر + (25) ( جتا 135 ْ ) = (36 – صفر – 17.7 ) = 18.3 كم .
جا q ه 1 + ف 2 جا q ه 2 + ف 3 جا q ه 3 = ف 1 جا صفر + ف 2 جا 90 ْ + ف 3 جا 130 ْ = صفر + 42 + 17.7 = 59.7 كم .
وتكون قيمة ( ش ) أكبر ما يمكن عندما تكون الزاوية q بين (ق ، ف) = صفر و تكون ش = صفر عندما تكون الزاوية بين ( ق ، ف ) = 90 ْ
4- الضرب الاتجاهي V ectar P roduct
يعبر عنه ( أ × ب ) ويُرمز لهذا النوع من الضرب بـ ( × ) وينتج عنه كمية متجهة .
وقيمة هذا المتجه تحدد بـ ( أ ب جا q ه ) حيث الزاوية بين أ ، ب . أما اتجاه الكمية فيحدد بقاعدة اليد اليمنى حيث يشير الإبهام إلى إحدى الكميات( الكمية الأولى ) والأصابع إلى الكمية الثانية . وبذلك يكون اتجاه حاصل الضرب عمودياً على راحة اليد للخارج .
ومن الأمثلة على هذا الضرب :
– القوة المغناطيسية المؤثرة في شحنه .
تقبلوا خالص تحياتي و إحترامي
لكي نصنع بلازما تحت ضغط منخفض لغاز ما، فإن كل ما يلزم هو مفرغة هواء بارتفاع متر وعرض نصف متر تقريبا، وكذلك مصدر تغذية للتيار المتردد، (في الصناعة يكون مصدر التيار في مجال ترددات الراديو 13.56MHz وحديثا يمكن استخدام أجهزة الميكروويف ذات ترددات أعلى 2.45GHz). في الواقع يمكن عمل بلازما باى شكل ولكن الأكثر استخداما في الصناعة
ويحتوى على قرصين معدنيين نصف قطرهما حوالي 15 سم والمسافة الفاصلة بينهما من 4-5سم. بعد ضخ الهواء بواسطة المفرغة يدخل الغاز المراد تحويلة إلى حالة بلازما وقد يكون خليط من الغازات، وبمجرد مرور التيار الكهربي (~200Watt) يبدأ الغاز في التوهج مصدرا ضوءا ساطعا لونه يعتمد على نوع الغاز. من الامثلة على حالة البلازما هي طبقات الجو المحيطة بالكرة الارضية كما في اليونيسفير وكذلك اللهب الصادر من انطلاق الصواريخ ومن ذلك يتضح انه يمكن اعتبار ان حالة التأين (او البلازما) هي حالة ساخنة بشكل عام
التطبيقات الصناعية للبلازما
صناعة الدوائر الالكترونية المتكاملة
تستخدم البلازما ذات درجات الحرارة المنخفضة في العديد من المجالات الهامة على سبيل المثال، معظم الدوائر المتكاملة المعقدة جدا والتى تدخل في تركيب كل جهاز الكتروني، هذه الدوائر الالكترونية تحتوى على عشرات الآلاف من الترانزستورات والمكثفات موصلة ببعضها البعض بواسطة أسلاك قطرها في حدود 0.1 ميكرومتر، هذا النوع من التكنولوجيا الدقيقة والمعقدة تصنع باستخدام البلازما، حيث تقوم البلازما بنحت الدوائر الالكترونية على شريحة السليكون بناءا على القناع المعدني الموضوع أمام الشريحة.
في هذه العملية يكون النحت على شريحة السليكون كالاتى: حيث أن الالكترونات داخل البلازما حرة الحركة وطاقتها أعلى من الايونات الموجبة فإنها تصل إلى أطراف البلازما بسرعة وتقوم بدورها بجذب الايونات الموجبة اتجاهها وتعجلها باتجاه الشريحة وعند اصطدام الايونات الموجبة بالمناطق المكشوفة على الشريحة تقوم بنحتها، وبعدها يستبدل القناع المعدني بآخر مطبوع عليه الدوائر الكهربية الخاصة بالطبقة الثانية وهكذا بالنسبة للطبقة الثالثة والرابعة… والخ حتى تتم عملية النحت.
هنالك طريقة أخرى متبعة وهى تعتمد على استخدام مركب Carbon tetrafluoride CF4 كمصدر لإنتاج البلازما، وعندها يتحول هذا المركب إلى أجزاء أخرى منها ذرات الفلورين. هذه الذرات تتفاعل مع ذرات السليكون المكونة للشريحة وتكون مركب جديد هو Silicon tetrafluoride والذي يمكن إزالته إثناء عملية الضخ. يتضح مما سبق أن هذه الطريقة هي عملية كيميائية تقوم فيها ذرات الفلورين بالتهام السليكون المراد إزالته. وهذه العملية أسرع من عملية النحت المذكورة سابقا.
وتجدر الإشارة إلى أن البحث والتطوير جارى منذ عام 1980 وحتى الآن للحصول على بلازما منتظمة لتغطى اكبر مساحة ممكنة حيث كانت شريحة السليكون المستخدمة قديما تبلغ 2سم2 إما الآن فهي تصل إلى 20سم2، وهذه البلازما لها استخدامات عديدة فهي تستخدم في شاشات أجهزة الكمبيوتر المتنقلة Notebook computer كمصدر ضوئي، والتي أدت إلى تطور كبير في مجال تكنولوجيا شاشات العرض. ويسعى العلماء حاليا للحصول على شاشة مساحتها 1متر مربع وسمكها لا يزيد عن 4-5 سم لاستخدامها كشاشة تلفزيون يمكن تعليقها في المنازل والمحلات دون إن تشغل حيز من الغرفة، وهذا سوف يتحقق بالوصول إلى بلازما متجانسة على مساحة 1متر مربع.
المحافظة على نظافة البيئة
تستخدم البلازما حاليا في العديد من الدول المتقدمة في التخلص من المواد السامة الملوثة للبيئة معتمدين على العمليات الكيميائية الفريدة التي تتم داخل البلازما. حيث يمكن إن تقوم البلازما بتحويل المواد السامة المنبعثة من مداخن المصانع ومن عوادم السيارات مثل غاز أكسيد الكبريت (SO) وأكسيد النيتريك (NO) إلى مواد غير سامة. فعلى سبيل المثال غاز NO قبل إن يخرج من المدخنة إلى الغلاف الجوى، توجه عليه حزمة من الالكترونات ذات طاقة عالية من جهاز مثبت في منتصف المدخنة تعمل على تأيين الغازات الموجودة (المادة السامة NO والهواء) أي تحولها إلى حالة بلازما. وقبل خروجها إلى الجو تكون مرحلة التأيين قد انتهت وتتكون جزيئات النيتروجين والأكسجين نتيجة لعملية إعادة الاتحاد. وبهذا نكون قد حولنا الغازات الملوثة إلى غازات نافعة وبتكاليف قليلة.
يجدر الإشارة هنا أنه تم حديثا التوجه إلى معالجة الغازات المنطلقة من عوادم السيارات، حيث تم تركيب جهاز بلازما في عادم السيارة ليعالج الغازات السامة قبل خروجها إلى الجو. كذلك أجريت تجارب عديدة على الفضلات الصلبة والسائلة حيث تستخدم بلازما عند درجات حرارة عالية تصل إلى 6000 درجة مئوية تعمل على تبخير وتحطيم المواد السامة وتحولها إلى غازات غير سامة، وفى نهاية العملية يكون ماتبقى من مواد صلبة في صورة زجاج. وتم في أمريكا العام الماضي التخلص من حوالي 4000 مستودع يحتوى على فضلات صلبة وملوثة للبيئة بواسطة البلازما. وقد كانت هذه الفضلات تدفن في باطن الأرض مما كانت تسبب أخطار تلوث. وباستخدام البلازما يمكن حاليا التخلص من 200 كيلو جرام من المواد السامة في الساعة.
الهدف من التجربة:
العلاقة بين درجة الانصهار ونقاء المركب
الادوات المستخدمة:
مطاط – انبوبة شعرية مقفلة من احد الطرفين – ترمومتر – ماسك & حامل – كوب بة زيت – سخان كهربائي
– المادة الصلبة
الحتياطات الواجب توافرها عند اجراء التجربة:
1. تكون المادة الماخوذة صغيرة
2. تكون المادة جافة ومطحونة
3. التسخين يكون تدريجي
4. تكون العين عمودية على تدريج الترمومتر
5. يكون المطاط بعيدا عن الزيت
6. الترمومتر لا يلامس قاع الكاس
7. يكون السائل المستخدم(الزيت)مرتفع في درجة غليانة عن درجة غليان المادة الصلبة
خطوات التجربة:
يتم اخذ كمية من المادة الصلبة بواسطة الانبوبة الشعرية وتكون كمية صغيرة ويتم انزال المادة الصلبة الى قاع
الانبوبة الشعرية ثم يتم تثبيت الانبوبة الشعرية بواسطة المطاط على الترمومتر بحيث يكون المطاط بعيدا عن
الزيت ثم يتم تثبيت الترمومتر في الحامل&الماسك ومن ثم يتم انزال الترمومتر الى الكاس الذي بة
زيت(الموضوع على السخان من قبل) ويتم مراقبة انصهار المادة الصلبة فاذا بدا الانصهاريتم اخذ قراءة
الترمومتر وتسجيلها في الدفتر ومتابعة المادة حتى تنصهرتماما ويتم اخذ قراءة الترمومتر النهائية فاذا كان الفرق
بين درجات الحرارة الماخوذة(1-2) درجة مئوية أي ان المادة الصلبة نقية وخالية من الشوائب واما اذا كان
الفرق (3-4)درجات مئوية فهذا يعني ان المادة غير نقية وبها شوائب
مثال:
110 درجة مئوية بداية انصهار المادة الصلبة
112 درجة مئوية نهاية انصهار المادة الصلبة
112-110=2 درجة مئوية مدى الانصهار
المادة نقية الاستنتاج
عيوب نموذج راذرفورد
الذرة ليست متزنة ميكانيكيا ( بما الالكترون يدور حول النواة في مسار دائري فانه حسب نظرية ماكسويل يشع أمواجا كهرومغناطيسية ويفقد جزءا من طاقته وبالتالي يدور في مسار حلزوني حتى يلتصق بالنواة وهذا لايحدث لم يستطع تفسير الطيف الخطي
يتضمن هذا القياس إثارة المادة إلى مستويات عالية من الطاقة بالطاقة الضوئية أو الكهربائية ثم رجوعها إلى مستوى طاقة منخفض فينبعث منها من الطاقة الممتصة وتكون مقياسًا لكمية المادة وذلك بواسطة الطرق الآتية :
وقد كان إسحاق نيوتن, أول من قرر هذه النتيجة في قانونه الثالث:
( لكل فعل رد فعل مساوٍ له بالمقدار ومعاكس له بالإتجاه)
ونتسائل هنا: إذا كانت القوى على شكل أزواج, فلماذا لا يلغي تأثير أحدهما الآخر؟
والجواب ( لأن كلاً من القوتين تؤثر على جسم مختلف )
فمثال على قانون نيوتون هو شدك لحبل موصول بحائط بقوة معينة.. فان الحائط سيرد عليك الفعل بقوة مساوية للقوة التي اثرت بها عليه :
**يجب التذكر دائما ان القوتين متساويتين مقدارا ومتعاكستين في الاتجاه
إذا أردت رفع حقيبة عن سطح الأرض فيجب أن تؤثر عليها بقوة إلى أعلى
وإذا أراد سائق تغيير اتجاه سير العربة التي يقودها فإنه يؤثر بقوة على مقود السيارة .
ولعلك تلاحظ من الأمثلة السابقة ومن أمثلة حياتية عديدة أنه لكي تغير الحالة الحركية للجسم فلا بد من وجود قوة وهذا ما ينص عليه القانون الأول لنيوتن :
” يبقى الجسم الساكن ساكناً, ما لم تؤثر فيه قوة , يبقى والجسم المتحرك متحركاً وبسرعة ثابتة وفي خط مستقيم, ما لم تؤثر عليه قوة محصلة تعمل على تغيير مقدار سرعته أو اتجاهها أو الاثنين معاً “.
وينبثق عن هذا القانون مفاهيم عديدة أهمها :
1- القصور الذاتي :والقصور هو ممانعة الجسم لأي تغيير في حالته الحركية, أو عدم قدرته على إحداث تغيير في حالته الحركية, فالجسم لا يستطيع ( بنفسه ) أن يغير حالته الحركية, ولا بد من وجود قوة خارجية تعمل على ذلك.
2- كتلة الجسم :وكتلة الجسم هي كمية فيزيائية , كلما ازدادت ازداد القصور الذاتي للجسم, فتحريك صخرة كبيرة يحتاج إلى قوة أكبر من تلك اللازمة لتحريك صخرة صغيرة .
3- القوة :والقوة هي المؤثر الذي يؤثر في الأجسام فيؤدي إلى تغيير حالتها الحركية. والقوة تعمل على إحداث التغييرات التالية :
1- إيقاف الجسم المتحرك 2- تحريك الجسم الساكن
3- زيادة سرعة الجسم المتحرك 4- تقليل سرعة الجسم المتحرك
5- تغيير اتجاه الجسم المتحرك.
ونستطيع من خلال قانون نيوتون الاول تفسير عدة ظواهر مثل:
1- اندفاع حمولة سيارة إلى الأمام عند التوقف المفاجئ واندفاعها للخلف عند التحرك المفاجئ .
فعند السكون تكون الشاحنه والحمولة كما يلي:
وعند بدء تحرك الشاحنه:
** سرعة الشاحنة نسبة للحمولة كانت صفر..فعند تغيرها عن الصفر وبقاء سرعة الحمولة صفر (سرعة الحمولة اصغر من سرعة الشاحنه) تراجعت الى الوراء الى ان اكتسبت سرعة الشاحنه
وعند توقف الشاحنه:
** سرعة الشاحنه كانت مساوية لسرعة الحمولة, فعندما اصبحت سرعة الشاحنه صفر اما الحمولة فكانت على السرعة السابقة, تقدمت الى الامام…
2- حسب ما سبق نستطيع ان نستنتج ان الخروج من اي مركبة وقت حركتها خطر
شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية .
هاتين صفحتين … فقط صفحتين … يحتويان على التالي
Physical Constants in MKS Units
Powers of 10
Dimensions, Quantity, Unit, Equivalents
Physical Constants in CGS Units
Conversion Factors
قبل التحميل … صلي على حبيبك المصطفى (صلى الله عليه وسلم) وعلى آله وصحبه أجمعين
في البداية إحترت أضعهم في أي منتدى … وبعد تفكير ققررت أضعهم في منتدى ميكانيكا الكم … لأنه بصراحة، أحب المنتديات إليَ !!!
وآخر دعوانا أن الحمد لله رب العالمين
وصلي اللهم وبارك على نبي الرحمة سيد ولد أدم أبى القاسم “محمد بن عبد الله” وعلى آله الطيبين الطاهرين وعلى أصحابه الغر الميامين وسلم تسليماً كثيراً
لا تنسونا من صالح دعائكم
المصدر
http://www.hazemsakeek.com/vb/showthread.php?t=24240
شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية .