التصنيفات
العلوم الفيزيائية

المــــــادة و حـــــــالاتها الســــــت " الصلبــــــــة "

بسم الله الرحمن الرحيم

¤||¤ الســـــــ عليكم ورحمــــ الله ـــــة وبركاته ـــــــلام ¤||¤

.^.الحالـــــــةالصلبــــــــــــة.^.

تعليم_الجزائر

تعليم_الجزائر

تكون الذرات في الحالة الصلبة للمادة قريبة جداً من بعضها البعض ( متراصة ) . كما أن لها موضعاً ثابتاً. وبالتالي ليس لها القدرة على الحركة الانتقالية ولكن لها القدرة على التذبذب أو الاهتزاز حول موضعها. ولذا تتميز المادة في الحالة الصلبة بثبات الشكل والحجم وعدم القابلية للإنضغاط . وتوجد المادة في الحالة الصلبة على شكل متبلر أو غير متبلر فالمادة المتبلرة تتكون من بلورة أو أكثر , حيث تأخذ الذرات أو الجزيئات أو الأيونات ترتيباً منتظماً ويمكن وصف البلورة بأنها تتكون من وحدات صغيرة ثلاثية الأبعاد متكررة بدورية منتظمة كما هو في الفلزات مثل Fe.

تعليم_الجزائر

والمركبات ذات الروابط التساهمية – الشبكية مثل أكسيد السيليكون البلوري SiO2 . والسيليكون Si والمركبات الايونية مثل كلوريد الصوديوم NaCl . أما في حالة المادة الصلبة غير المتبلرة فلا يوجد ترتيب منتظم للذرات أو الجزيئات أو الأيونات وبالتالي فإن الوحدات الصغيرة المتكررة تنعدم فيها كما هو الحال في أكسيد السيليكون غير البلوري SiO2

تعليم_الجزائر
تعليم_الجزائر

التركيب البلوري لــــــــSiO2 في الكوارتز

تعليم_الجزائر

التركيب البلوري في كلوريد الصوديوم NaCl

تعليم_الجزائر

التركيب غير البلوري لــــــــSiO2 في الزجاج

يتبع —

تعليم_الجزائر

تعليم_الجزائر

.^.الخواصالفيزيائيةلمجموعةمنالموادفيالحالةالصلبة.^.

تعليم_الجزائر

نلاحظ من الجدول ان الخواص الفيزيائية للمواد الصلبة تختلف باختلاف قوى الترابط بين الذرات أو الجزيئات أو الايونات المختلفة المكونة لها .
ففي حالة العناصر الفلزية ترتبط ذرات العناصر مع بعضها البعض عن طريق الرابطة الفلزية “Metallic Bonding ” ومثال على ذلك عنصر الالمونيوم والصوديوم .

تعليم_الجزائر

الرابطة الفلزية في الالمونيوم

تعليم_الجزائر

الرابطة الفلزية في الصوديوم

أيونات موجبة ” كاتيونات ” في بحر من الالكترونات حركة الحركة التي لا ترتبط بذرة بعينها.

تعليم_الجزائر ومن هنا نستدل :- تعليل توصيل الفلزات للتيار الكهربائي .

كما يؤثر وجود الرابطة الفلزية عموما في درجة انصهار الفلزات حيث تتراوح درجات انصهارها من المنخفضة الى المرتفعة جدا.

في حالة المركبات الايونية مثل NaCl و MgO فإن المركب يتكون من أيونات موجبة وأخرى سالبة الكهروستاتيكي القوي ” رابطة أيونية Ionic Bonding” ولذا فإن لهذه الأيونات موضعا ثابتا وليس لها القدرة على الحركة الانتقالية . أما اذا تحول المركب الأيوني الى محلول أو مصهور فيصبح للأيونات القدرة على الحركة .

تعليم_الجزائر

تعليم_الجزائر

.. ترتبط الأيونات الموجبة والأيونات السابة هن طرق التجاذب الكهروستاتيكي القوي ” رابطة أيونية ” في كلوريد الصوديوم NaCl …

… الرابطة الأيونية في أكسيد المنجنيز …

فان للمركبات الايونية درجات انصهار متفاوتة نسبياً . ويعود ذلك الى مقدار قوى الترابط بين الأيونات . وتؤثر شحنة الأيون وحجمه في قوة الترابط فكلما زادت شحنة الأيون وصغر حجمه زادت قوى الترابط الأيوني وارتفعت درجات الانصهار .

تعليم_الجزائر

أما الذرات في بلورة SiO2 فترتبط معااا عن طريق الرابطة التساهمية ” covalent bonding ” مكونة شبكة ثلاثية الأبعاد من هذه الروابط وبالتالي درجة انصهار هذه المركبات عالية جدا ( عادة 1000 o C )

تعليم_الجزائر

تعليم_الجزائر

تعليم_الجزائر فنستنتج ان الصفات الفيزيائية للمواد الصلبة” درجات الانصهار . التوصيل الكهربائي . القابلية للذوبان ” اختلفت باختلاف قوى الترابط بين الأيونات والذرات.

تعليم_الجزائر


التصنيفات
العلوم الفيزيائية

طاقة التأين لذرة

طاقة التأين لذرة (Ionization Energy IE) هى الطاقة اللازمة لنزع إلكترون منها . وبتعميم أكثر ، تكون طاقة التأين نهى طاقة نزع الإلكترون ن بعد نزع الإلكترونات ن-1 . وطاقة التأين ذات اهمية كبيرة في الكيمياء الفيزيائية نظرا لأنها مقياس لمقدار إذعان الذرة لفقد الإلكترونات ، أو بمعنى اخر القوة التى يتم إمساك الإلكترون بها .
فهرس

تعليم_الجزائر //
القيم والإتجاهات

بصفة عامة ، فإن طاقة التأين تقل خلال المجموعة بالجدول الدوري و تزيد من اليمين لليسار خلال الدورة . كما أن طاقة التأين تتناسب عكسيا بشدة مع نصف القطر الذري . كما أن هناك زيادة كبيرة في طاقة التأين بعد نفاذ أى مستوى فرعى للمدارات الذرية . وهذا لأنه بعد انتقال الإلكترونات من مدار معين ، فإن طاقة التأين تتضمن إزالة إلكترون من مدار أقرب للذرة . وتكون الإلكترونات الموجودة في مدارات قريبة لها قوى جذب كهرستاتيكية أكبر ، وعلى هذا تتطلب طاقة أكبر لتحريكها .
بعض قيم طاقة التأين للدورة الثالثة في الجدول التالي :
طاقة التأين كيلو جول لكل ظ…ظˆظ„ (ظˆط­ط¯ط©)العنصرالأولىالثانيةالثالثةالرابعةالخامسةالسادسةالس ابعةNa4964,560Mg7381,4507,730Al5771,8162,74411,600Si7861,5773,2284,35416,100P1,0601,8902,9054,9506,27021,200S9992,2603,3754,5656,9508,49011,000Cl1,2562,2953,8505,1606,5609,36011,000Ar1,5202,6653,9455,7707,2308,78012,000
التفسير الكهر ستاتيكي

يمكن توقع طاقات التأين بإستخدام تحليل بسيط عن طريق الجهد الكهرستاتيكي ونموذج بور للذرة كالتالي :
بإفتراض إلكترون له طاقة e- ، وأيون له شحنة ne ، حيث n هى عدد الألكترونات المفقودة من الأيون . وطبقا لنموذج بور ، حيث سيقوم الإلكترون بالإقتراب والإرتباط بالذرة ، فسوف يكون على بعد نصف قطر a . ويكون الجهد الكهرستاتيكي على مسافة a من نصف القطر الأيوني ، يرجع لنقطة محددة على بعد :
تعليم_الجزائر
وحيث ان الإلكترون له شحنة سالبة ، ومسحوب ناحية الجهد الموجب . ( وقيمة هذا الجهد يسمى جهد التأين ) والطاقة اللازمة له ليقفز ويترك الذرة هى :
تعليم_الجزائر
وهذا التحليل البسيط غير كامل ويترك المسافة a غير معروفة . ويمكن ان يكون أكثر دقة بتحديد هذه المسافة لكل إلكترون في العناصر الكيميائية ، وعلى هذا تتطابق العلاقة مع التجارب العملية .

التفسير طبقا لميكانيكا الكم

طبقا لنظرية ميكانيكا الكم ذات التعقيد الأكثر ، فإن مكان الإلكترون يتم وصفه كسحابه للأماكن المتوقع وجوده فيها ( بالتحديد مدار إلكتروني ) والتى تتراوح بالقرب والبعد من النواة . ويمكن حساب الطاقة بتكامل هذه السحابة ، ويكون أبسط شكل لأخر طاقة تأين كالتالي :
تعليم_الجزائرحيث H الهاملتونية (ميكانيكا كم) ، ψ هى المعادلة الموجية للحالة الأرضية ، حيث أن الدالة الذاتية لل H لأقل طاقة . ظˆط¨ط§ظ„ظˆط­ط¯ط§طھ ط§ظ„ط°ط±ظٹط© فإن H تقريبا تكون :
تعليم_الجزائرحيث ان Z هى الشحنة النووية . وبوجود الهماملتونية فإن الطاقة يمكن حسابها بسهولة ، وفى الواقع تكون مساوية للطاقة المعطاة في نموذج بور ، بالمسافة المحددة a = a 0 / Z حيث a 0 هى نصف قطر بور .
وبصفة عامة ، فإن حساب طاقة التأين ن تتطلب طرح طاقة النظام Z-n 1 من طاقة النظام Z-n . المعادلة الأولى بالأعلى تمتد لتتكامل مع تناسقات كل إلكترون ، والطاقة الثانية تتطلب كميتان إضافيتان لكل إلكترون ودفع الإلكترون وكمية لكل زوج من الإلكترونات . وحساب هذه الطاقات ليس سهل ، ولكنها موضوع جيد للدراسة ، ويتم بصفة منتظمة في ط§ظ„ظƒظٹظ…ظٹط§ط، ط§ظ„ط­ط³ط§ط¨ظٹط© .


التصنيفات
العلوم الفيزيائية

إشـعـاع الجـسـمـ لأسـود

تعليم_الجزائر تعليم_الجزائر
يعتبر الجسم الأسود في الفيزياء تعبيرا عن حالة مثالية لجسم يمتص كل الضوء الوارد اليه دون أن يعكس أي منها . نظريا هذا يقتضي ان يكون شديد السواد و عدم اصدار أي اشعاع منه لكن الواقع يخالف التعريف حيث يقوم هذا الجسم باصدار اشعاع حراري على شكل ضوء أحيانا . و يمكن تمثيل هذا الجسم بثقب صغير في تجويف درجة حرارة جدرانه ثابتة يمثل سطح جسم أسود. والسبب في ذلك أن أي إشعاع يسقط على الثقب سوف يُمتص داخل التجويف بعد أن يعاني من انعكاسات عديدة داخله . ولذلك يطلق على الإشعاع الذي يخرج من ثقب في جدار التجويف اسم إشعاع الجسم الأسود.

إشعاع الجسم الأسود

بدراسة الانبعاث الحراري المنبعث من الجسم الأسود عند درجات حرارة مختلفة وجد عملياً أن هناك نتيجتان هما:

* أن هناك توزيعاً معيناً لشدة الإشعاع المنبعث من الصندوق الأسود كدالة في الطول الموجي (l) أو طاقة الأشعة لأن الطاقة E ترتبط مع الطول الموجي من خلال العلاقة

E = h c / l

كما إن الطاقة ترتبط مع التردد من خلال العلاقة التالية:

E = h n

حيث n التردد.

* كلما زادت درجة الحرارة للجسم الأسود تكون الطاقة المنبعثة منه تحدث على أطوال موجية اقل ويزداد مقدار الإشعاع بزيادة درجة الحرارة.

وكان العالم كيرشوف قد بين من اعتبارات ترموديناميكية عامة جدا أنه من أجل أي طول موجي تكون نسبة معدل إصدارسطح مادة ما إلى معدل الإصدار من سطح الجسم الأسود تساوي عامل الامتصاص لهذه المادة عند هذا الطول الموجي. وهذا ما جعل سطح الجسم الأسود مُصدرا عياريا ملائما. وسوف نقتصر على دراسة إشعاع الجسم الأسود، أي الإشعاع الصادر من ثقب في جدار التجويف. تصدر كل من الذرات التي تكوّن الجدران إشعاعا كهرطيسيا؛ وفي الوقت نفسه تمتص الإشعاع الذي تصدره الذرات الأخرى، فيملأ حقل الإشعاع الكهرطيسي التجويف كله وحين يصل الإشعاع المحتجز داخل التجويف إلى حالة التوازن مع ذرات الجدران يكون مقدار الطاقة الذي تصدره الذرات في واحدة الزمن مساويا مقدار الطاقة الذي تمتصه هذه الذرات. فحين يكون الإشعاع داخل التجويف في توازن مع الجدران تكون كثافة طاقة الحقل الكهرطيسي ثابتة. وكانت التجارب قد بينت أن للإشعاع الكهرطيسي المحتجز داخل التجويف، وهو في حالة التوازن، توزعا طاقيا محددا تماما؛ أي أنه عند كل تواتر  (أو طول موجي ) هناك كثافة طاقية لا تعتمد إلا على درجة حرارة الجدران ولا علاقة لها بمادة هذه الجدران .

فالجسم الأسود المطلق هو الجملة المثالية التي تمتص كل الإشعاع الذي يسقط عليها. وبما أن الجسم الأسود هو ممتص كامل فينبغي أن يكون مشعا كاملا.

كثافة الطاقة التي يشعها الجسم الأسود في درجات حرارة مختلفة بدلالة طول موجة الإشعاع

وقد أدت مسألة إيجاد الآلية التي تجعل طاقة إصدار الذرات المشعة موزعة على مختلف التواترات كما يشاهد تجريبيا إلى ولادة الفيزياء الكمومية. ذلك أن كل المحاولات التي جرت في نهاية القرن التاسع عشر لتفسير هذا التوزع الطاقي بالاستناد إلى المفاهيم الكلاسيكية التي كانت سائدة في ذلك الوقت باءت بالفشل. إذا رمزنا بـ (T) لكثافة الطاقة الطيفية (أي عند الطول الموجي  ) كانت هي الطاقة (في وحدة الحجم من التجويف) المشَعة في المجال بين و وتقدر بـ . وقد وجد العالم الألماني فين Wien في العام 1869 تجريبيا القانونين التاليين:

* قانون الانزياح لفين: لدى رفع درجة حرارة الجسم الأسود تزداد الطاقة الكلية المشعة وتنزاح قمة التوزع نحو الأطوال الموجية الأقصر (الشكل1-3). وهذا يفسر تغير لون الجسم المشع حين تتغير درجة حرارته. فإذا رمزنا بـ لطول الموجة الذي تكون كثافة الإشعاع عنده عظمى كان قانون الانزياح لفين كما يلي:

* قانون الإشعاع لفين: تعطى الكثافة الطيفية لإشعاع الجسم الأسود بالعلاقة التالية:

حيث و ثابتان يعينان تجريبيا و Tهي درجة حرارة الجسم الأسود المطلقة. وقد وجد أن هذه العلاقة تتفق مع المنحني التجريبي في مجال الأمواج القصيرة فقط.

قانون ستيفان-بولتزمان

ينص قانون ستيفان بولتزمان على أن الطاقة المنبعثة من الجسم الأسود لكل وحدة مساحة تتناسب مع القوة الرابعة لدرجة جرارة الجسم.

E(T) = s T4

قانون رايلي-جينس

اعتبر العالمان رايلي وجينز أن الجسم الأسود مكون من عدد كبير من المتذبذبات المشحونة التي تتحرك حركة توافقية بسيطة simple harmonic motion وهذه المتذبذبات المشحونة تطلق أشعة كهرومغناطيسية أثناء حركتها بحيث تكون كثافة توزيع الطاقة المنبعثة من الجسم الأسود مساوية لكثافة الطاقة للمتذبذبات عند الاتزان الحراري. وقد وضع العالمان بناء على هذه الفرضية المعادلة التي تعطي عدد المتذبذبات لكل وحدة حجوم المسئولة عن كثافة الإشعاع عند طول موجي معين حيث أن:

وتكون طاقة هذا العدد من المتذبذبات هي المسئولة عن طول موجي في المنطقة من عند درجة حرارة T

حيث KT تعطي قيمة متوسط طاقة المتذبذبات وK هو ثابت بولتزمان والطرف الأيسر من المعادلة يعبر عن الطاقة لكل وحدة حجوم.

ولكن هذه الفرضية لرايلي وجينز فشلت في تفسير طيف الجسم الأسود.

في عام 1900 حصل كل من رايلي وجينس على العلاقة التالية (المسماة قانون رايلي- جينس) حين افترضا أنه يمكن تمثيل الإشعاع ضمن التجويف بمجموعة من الأمواج الثابتة وأن الطاقة الوسطية لكل من هذه الأمواج هي kT ( حيث k هي ثابتة بولتزمان):

وقد وُجد أن هذه العلاقة تتفق مع المنحني التجريبي في مجال الأمواج الطويلة فقط. بينما تتزايد في مجال الأمواج القصيرة ساعية إلى اللانهاية بدل أن تسعى إلى الصفر، أي أن تطبيق الميكانيك الإحصائي الكلا سيكي أدى إلى هذه النتيجة غير المعقولة، ودعيت هذه المشكلة بالكارثة فوق البنفسجية.

قانون بلانك

وفي عام 1900 أيضا قام العالم الألماني بلانك Planck بدراسة توزع إشعاع الجسم الأسود وافترض أن الذرات في التجويف، الذي يشكل الجسم الأسود، تسلك سلوك هزازات توافقية وأن كلا منها تهتز بتواتر معين وتمتص أو تصدر مقدارا من طاقة الإشعاع متناسبا مع تواتر اهتزازها، وهذا ما لاتنص عليه النظرية الكهرطيسية الكلاسيكية التي تتيح امتصاص أو إصدار الطاقة بشكل مستمر. وحصل بنتيجة ذلك على العلاقة التالية (قانون بلانك في الإشعاع):

حيث و ثابتان فيهما c سرعة الضوء و h ثابتة أدخلها بلانك وعرفت فيما بعد باسمه (ثابتة بلانك) وتبين أنها ثابتة فيزيائة أساسية. وقد وجد أن هذه العلاقة تتفق مع النتائج التجريبية بصورة ممتازة في كل مجالات الأطوال الموجية. لجأ بلانك لإعطاء علاقته السابقة أساسا فيزيائيا نظريا إلى الطرق الإحصائية لحساب الأنطروبية، ولجأ إلى حساب عدد الطرق الممكنة التي يمكن أن تتوزع بها كمية معينة من الطاقة على عدد معين من الهزازات في التجويف (الجسم الأسود). ووجد أنه لو عوملت الطاقة على أنها مقدار مستمر (كما هو متعارف عليه) لكان عدد هذه الطرق لانهائيا. لذلك قسم بلانك، لتسهيل عملية عد هذه الطرق، طاقة الهزازات الكلية إلى “عناصر” مقدار كل منها ، ووجد أنه يمكن التوصل إلى علاقته إذا وضع ، حيث تواتر الهزازة و ثابتة وجد أن قيمتها صغيرة جدا هي:

تبين فيما بعد أن هذا المقدار هو مقدار أساسي في الطبيعة، دعي ثُابتة بلانك، وقام بدور هام في النظرية الكمومية. لقد كان فرض بلانك أن طاقة الإشعاع مؤلفة من “عناصر” أو كمّات quanta (مفردها كم quantum) متناسبة مع تواتر الإشعاع ( ) نقطة البداية لنظرية جديدة، هي النظرية الكمومية، قلبت الكثير من المفاهيم القديمة.


التصنيفات
العلوم الفيزيائية

الفيزياء الكمية


||×|| الفيزياء الكمية ||×||

الكميات القياسية هي التي تتحدد بالمقدار فقط، مثل:الطول – الزمن – الكتلة – المساحة – الكثافة – المسافة.
الكميات المتجهة هي التي تتحدد بالمقدار والاتجاه و نقطة التأثير، مثل: الوزن(الثقل) – التسارع – القوة – السرعة.
تصنف الكميات الفيزيائية إلى قسمين:

  • أ-كميات قياسية.
  • ب- كميات متجهه.


التصنيفات
العلوم الفيزيائية

معادلة شرودنغر , نظرية بودينج

معادلة شرودنغر

ظهرت معادلة شرودنغر عام 1925 على يد الفيزيائي النمساوي إرفين شرودنغر لتصف الجمل الكمومية المعتمدة على الزمن. وتحتل هذه المعادلة أهمية خاصة في ميكانيك الكم حيث تعتبر بمثابة قانون التحريك الثاني لنيوتن الذي يعتبر أساسيا في الفيزياء الكلاسيكية.
حسب التعبير الرياضي لميكانيك الكم, تترافق كل جملة فيزيائية مع فضاء هلبرت المركب (المعقد Complex) (وهو عبارة عن فضاء شعاعي) حيث توصف كل حالة لحظية للجملة بشعاع وحدة في هذا الفضاء الشعاعي. و بالتالي يكون شعاع الحالة بمثابة ترميز (تشفير encoding) لاحتمالات النتائج الممكنة من عمليات القياس بكافة أشكالها على هذه الجملة. عندما تتغير هذه الجملة مع الزمن, يصبح شعاع الحالة هذا بمثابة تابع للزمن (دالة زمنية).
نظرية بودينج

نظرية البودينج هي النظرية التي تم اقتراحها بعد اكتشاف الإلكترون ولكن قبل اكتشاف البروتون والنيترون. وحسب هذه النظرية يتم تخيل الذرة كإلكترونات محاطة بحساء من الشحنات الموجبة مثل نواة البرقوق المحاطة بالبرقوق نفسه. وتم اقتراح هذه النظرية عن طريق إرنست رذرفورد عن طريق تجربة رقاقة الذهب والتي تم اكتشاف نواة الذرة بواسطتها.


السلام عليكم ورحمة الله وبركاته

الحمدلله والصلاة والسلام على رسول الله وعلى آله وصحبه أجمعين

شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية .


التصنيفات
العلوم الفيزيائية

الاطياف وانواعها وماهيه طيف الشمس

الأطياف
تصنف إلى صنفين

أولا :–أطياف الانبعاث

وهي أطياف المواد المتوهجة وتكون على ثلاث أنواع

1 :- الطيف المستمر : هو طيف يحتوي لمدى واسع من الأطوال الموجية المتصلة والمتدرجة
نحصل عليه من الأجسام الصلبة المتوهجة أو السوائل المتوهجة أو الغازات المتوهجة تحت ضغط كبير
2 :- الطيف الخطي البراق : هو طيف يحتوي على مجموعه من الخطوط الملونة البراقة على أرضية سوداء
نحصل عليه من الغازات ومن الأبخرة ذريت التركيب للعناصر تحت ضغط اعتيادي أو اقل
فوائده يستخدم للكشف عن العناصر المكونة للسبائك حيث أن لكل عنصر طيف مميز كذلك يستخدم في معرفه سرعه ابتعاد أو اقتراب نجم ما بالنسبة إلى الأرض
3 :- الطيف ألحزمي البراق هو طيف مكون حزمه أو عدد من الحزم الملونة تفصلها خطوط سوداء
نحصل عليه من المواد متوهجه جزيئيه التركيب كغاز ثاني أوكسيد الكربون

ثانيا :– أطياف الامتصاص

طيف ألامتصاص :- هو طيف مستمر تتخلله خطوط أو حزمه معتمه
ويكون على نوعين
1:- طيف الامتصاص ألحزمي
يمكن الحصول عليه من إمرار الضوء المنبعث من مصدر طيفه مستمر كمصباح التنكستن خلال ماده تمتص الأطوال الموجية . مثل الأجسام الصلبة الشفافة كزجاجه حمراء مثلا فأنها سوف تمتص بقيه الألوان وتنفذ ألون الأحمر فقط ليكون طيف امتصاص حزمي ويظهر في الطيف شريط أسود يشمل الأطوال الوجيه التي امتصتها الزجاجة من الطيف المستمر
وكذلك يمكن الحصول على طيف الامتصاص ألحزمي عند إمرار طيف مسمر في غاز غير متوهج جزيئي التركيب مثل الأوكسجين والنتروجين وثاني أوكسيد الكربون

2 :- طيف الامتصاص الخطي
يمكن الحصول عليه من إمرار الضوء المنبعث من مصدر طيفه مستمر كمصباح التنكستن خلال بخار غير متوهج للصوديوم ويكون على شكل طيف مستمر فيه خطان أسودان

لفهم سبب الامتصاص هذا سواء كان خطي أم حزمي لنفرض أننا قمنا بفحص بخار متوهج للصوديوم فأننا سوف نجد طيف خطي براق ذو طولين موجيين أي لونين معينين على أرضيه سوداء فعند إمرار طيف مستمر بنفس البخار لكنه غير متوهج فانه سوف يمتص فقط الطولين الموحيين الذين يشعهما فيما لو توهج ذلك البخار

والآن سؤال يطرح نفسه هل طيف الشمس هو طيف انبعاث أم امتصاص
إن الاختبارات البسيطة أثبتت أن طيف الشمس هو طيف انبعاث مستمر ولكن الاختبارات الدقيقة أثبتت انه طيف امتصاص خطي يحتوي على أكثر من 600 خط اسود سميت بخطوط فرانهوفر نسبه لمكتشفها
والسبب في ذلك أن الشمس تعطي طيفا مستمرا ولكن غازات الشمس الغير متوهجه وغازات جو الأرض الغير متوهجه تمتص الأطوال الموجيه التي تبعثها فيما لو كانت متوهجه


السلام عليكم ورحمة الله وبركاته

موفق بإذن الله … لك مني أجمل تحية .

شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية . شـكــ وبارك الله فيك ـــرا لك … لك مني أجمل تحية .


التصنيفات
العلوم الفيزيائية

القوى الخفيه في النواه

تحية طيبة للجميع تعليم_الجزائر
اتيت لكم هذه المرة بمعلومات اتمنى ان لا يكون احد قد سبقني في عرضها وهي عن القوى الخفيه في النواة ولنتعرف على عائلة الكواركات وقد تم الحصول عليها من احد المواقع

القوى الخفيه في النواه

كان تركيب نواة الذره أحجيه زمنا طويلا وبعد سبر دام اثنتي عشر سنه أكتشف جميس شادويك اخيرالقطعه المفقوده ألا وهي النيترون وكان من شأن هذا الاكتشاف أن وضع الفيزياء النوويه على الطريق التي ادت في النهايه الى صنع القنبله الذرية

في عام 1920 اقترح رذرفورد أنه في داخل الذره جسيما ثابتا بالاضافة الى الالكترون والبرتون وكان العلماء يعتقدون في ذلك الوقت أن الالكترونات لاتحيط بالنواة فحسب بل توجد في داخلها كذلك كانوا يعتقدون أن هذه الالكترونات الداخليه هي مصدر الجسيمات التي نشاهدها في النشاط الاشعاعي بيتا وادعى رذرفورد أنه يجري أحيانا التقاء بروتون وألكترون ليشكلا جسيم احادي اطلق عليه اسم (نترون) وشرع على الفور بالبحث عن الجسيم يعاونه في ذلك مساعده شاوديك ولكن المحاولات في البحث عن النيترون كانت فاشله وبقيا هذان العالمان حائران فتره من الزمن …..

في هذه الاثناء اكتشف بوث وبكر أن رجم اليريليوم بجسيمات الفا يولد إشعاع خارقا ينفذ عبر عشر سنتيميترات من الرصاص وظلا يعتقدان انه اشعاع قاما حتى عام 1932 عندما بينت مدام كوري وزوجها أن الإشعاع يرتطم بالبرتونات ويخرجها من ذرات الهيدروجين لكن بيكر عندما عمل تجرية مدام كوري افترض ان الجسم الخارج هو جسم مساوي للبرتون في الكتلة هو الجسم الذي طال البحث عن لكنه كان جسم قائما بذاته ولم يكن يتألف من الكترون وبروتون واكتشف ان النواه تتكون من بروتونات والكترونات وبما ان النيتورنات ليست مشحونه فانها لاتتاثر بالنوى الكهربيه الموجوده داخل الذره وتستطيع النفاذ عبر الماده بسهوله وهو سبب قوتها في الاختراق وقد تنباء العلماء بامكانية رجم النوى بهذا الجسيم الذي قاد الى عمل الانشطار النووي الاول طبعا بالاعتماد على المعادله الشهيره (الطاقة تساوي الكتله في مربع سرعة الضوء ) وسوف انقلكم من اكتشاف النيترون الى اكتشاف الماده المضاده والبيزترونات

كانت في الماده مكونه من ثلاث جسيمات اساسيه الإلكترونات والبروتونات والنيترونات هذا في عام 1932 مع انه في هذا العام اكتشف جسيم جديد وهو البوزترون في الاشعه الكونيه وهو المثال الاول على الماده المضاده كيفية اكتشاف هذه الماده المضاده قام ديراك بتطوير معادله تجمع بين الكموميه والنسبيه وكان لها اثر كبير وقد حلت كثير من المعادلات الرياضيه وكان احد الحلول يتوافق مع الالكترون العادي في حين بدا حل اخره يمثل الكترون يملك طاقة سالبة حار رواد مكنيكا الكم بهذه الطاقة السلبة وخاصه هايـزنبرغ اذ لم تكن الطاقة السالبه لتتوافق مع أي شي في عالم الفيزياء وهي نتيجه لا يمكن تجاوزها لا معادلة ديراك صحيحة خرج ديراك بحل لهذه المسأله لكنه حل غريب جدا أنه نظرية الثقوب …!!!

كانت الفكرة هي أن الالكترونات ذات الطاقة السالبة موجوده وهي جسيمات حقيقيه ونحن محاطون بعالم من الالكترونات مثل الهواء مع هذا فإنه لا يرى عادة مع ذلك ربما يحدث خواء (ثقب ) في هذا العالم من الالكترونات وتشبه هذه الثقوب الجسيمات الموجبه في الحقل الكهرطيسي وهنا تتبين قوة الرياضيات في مجال لايعتمد فيه على الحدس البشري واطلق ديراك على هذا الجسيم ذو الطاقة السالبه بالالكترون المضاد

لم يكن ديراك مهتم باكتشافه ولكن أندرسون الذي لم يكن على علم بأفكار ديراك وجد بعض مسارات جسيمات غريبه في الاشعه الكونيه تشبه تماما مسارات الجسيمات المتماثله مع الالكترونات عدى انها ذات شحنه موجبه وكانت صغير بحيث لايمكن ان تكون بروتونات واسم هذا الجسم المجهول (البوزترون) ولدى معرفة ديراك بإكتشاف البوزترون تابع تنبؤه بأنه ينبغي ان يكون هناك بروتون مضاد أيضا وقد اكتشف هذا الجسم لاحقا والواقع اثبت انه لكل جسيم دون ذري جسيم مضاد له ان نوجد عوالم متكامله من الماده المضاده ؟؟

يمكننا ان نتصور عالم من الماده المضادة لكن المادة والمادة المضادة تفني بعضها الاخر عندما يتلاقيان ويتحولنا الى طاقه وهذا يفتح باب جديد على اكثر علوم الفيزياء أساسيه هي فيزياء الخواء او الخلاء

وبعدها اكتشف النيترينو على يد العالم باولي

وفي ليلة من ليالي اكتوبر عام 1934 فارق يوكاوا النوم فتبين ان القوة النوويه تعمل فقط على مسافات قصيره جدا مليون مليون جزء من السنتيميتر ومثل هذه القوه لابد ان يحملها جسم ثقيل اثقل من الالكترون بمئات المرات فاطلق يوكاوا على جسيمه اسم “الميزون” ومعنها المتوسط لانه كان اصغر من البروتون واكبر من الالكترون وتاكد انه يظهر بشحنتين سالبة وموجبة ان هذا الجسم يتارجح بين البروتونات والنيترونات ذهابا وإيابا بينها ولاصقا معها لايمكن فصله بسهوله عن النواه وفي عام 1947 تم اكتشاف ميزون متوسط يتفق مع وصف يوكاوا على يد بويل في عام 1936 بعد ان اكتشف أندرسون البوزترون وجد جسما جديدا في الأشعة الكونية اسمها الميون كان يدرس أندرسون الأشعة الكونيه بقرب سطح البحر ووجد ان الجسيمات في هذه المنطقه خارقه تستطيع ان تخترق طبقة سمكه من الرصاص ظن أندرسون لفتره من الزمن انها قد تكون الكترونات وفي عام 1935 وجد اول دليل على انه بصدد نوع جديد كليا من الجسيمات وبعد سنه أي في عام 1936 تلقى أندرسن جائزة نوبل على اكتشافه البوزترون

أطلق أندرسون اسم الميزوتون على الجسيم الجديد والذي يعني “فيما بعد ” وبعد ذلك اختصر الى ميزون واعتقد العديد من العالماء ان هذا الجسم هو نفسه جسيم يوكاوا لكن أندرسون كان مقتنع انه ليس هو فجسيمه محصن ضد القوى النوويه مع انه لهما نفس الكتله كان جسيم يوكاوا هو “ميزون باي” او” البيـون” في حين اطلق أندرسون على جسيمه اسم “ميزون” أو “ميون” ولم تتحد هويتة الميون بشكل صحيح حتى الخمسينات القرن العشرين انه في حقيقة الامل أخ ثقيل للإلكترون فهو اثقل منه 250 مرة وفي روما ابان دخولها من الالمان اكتشف ثلاثي ايطالي ان الميزون يمر خلال الجسم بسهوله نسبيا عبر كل انواع الماد لم يكن ميزون يوكاوا الذي يتفاعل مع النوى بسهوله ..

في الخمسينات بعد ان صنف العلماء الميزون والبيون اكتشفوا عائله جديده من جسيمات غريبه غير مستقره

في عام 1947 اكتشف روتشستر وبتلر من جامعه مانشستر مفعول غريب للاشعة الكونيه فقد برز في حجرة السحاب العائده لهما مساران ينبعثان من نقطه واحده على هيئة رقم (8) العربي استنتج الباحثان انهما بصد حسيم مجهول يتفكك الى جسيمين ثانويين .

في عام 1950 أكد أندرسون الاكتشاف بصوره فوتوغرافية لحجرة السحاب على قمة جبل لانه يوجد في الاعلى من الاشعة الكونيه 40 ضعف مما هو موجود عند مستوى سطح البحر لقد اكتشف 34 جسيما جديدا تعرف اليوم بـ (الميــزون –K) وسرعان مااكتشف علماء الفيزياء أن الكاوونات تتفكك بطريقه غربيه وان الطريقه التي أنتجت فيها الكاوونات توحي بان ينبغي ان عيش حوالي سنه نووية فقط والواقع انها تعيش حوالي (10^-8) وهو زمن اطول بالف مليو مليون مره الأمر الذي اذهل العقول وبسبب هذا الموت البطيء اطلق عليها الجسيمات الغريبة وفي مطلع خمسينات القرن العشرين استخدمت مسرعات عالية الطاقه وسرعان ماكتفوا ثلاث جسيمات غريبه تدعى (لمدا ؛ سيغما ؛ و كساي ) وفي عام 1954 فسر سبب طول عمرها النسبي وهو لانها تملك شحنه كهربيه بخاصيه اساسيه اخرى اسمها “غرابه ” فإن الجسيمات الاقل غرابه لاتتفكك بفعل القوه النوويه الشديده بل الضعيفه وتنجح في البقاء قيد الحياه مده ابر نسبيا

وبعد الخمسينات حلت وفره كبيره في الجسيمات الجديده غير المسقره

كان هناك ثلاثة بيونات وثلاثة كاوونات و ثلاثة سيغما وجسيم ساي وميونان ولمدا واحد بما في ذلك اصناف الجسيمات ذات الشحنه الموجبه والسالبه وعديمة الشحنه فقد بدى ان هناك فوضى في هذا العالم فلماذا تتعدد الجسيمات غير المستقرة ؟؟ حتى انه اصبحت تشوش على العلما…‍‍‍

في مطلع الستينات تبين وجود نيترينو ثاني ليكون رفيق للاول

في عام 1948 اكتشف اليهودي شتاينبيرغر (لعنة الله على اليهود)

ان هذه الميونات تنقسم الى ثلاثة اقسام الى الكترون ونترينوهين ولكي يكون كلامه صحيح كان لابد أن يكون احدهما نيترينو والاخر مضاد والمالوف ان الجسم وضاده يفنيان ويختفيان معا ف دفعه من الطاقه وبما انه لم يرها ي شخص فقد ساور العلماء الشك في صحتها

وومع اكتشاف النترينو الميوني عرفت اربعو جسيمات لاتتحسس القوه النوويه الشديده أن الإلكترون والميون المقترن كل منهما له بنترينو مناسب صنفوا على انهم كليبتونات (وتعني دقيق او صغير )

وتشترك الليبتونات نتحسسها لقوه النوويه الضعيفه واليوم انظم للاسره زوج وهو التاو والنترينو التاوي ان التاو الذي اكتشف عام 1975 اثقل من افلكترون با 3500 مره وعلى الرغم من مخاوف وجود سلم من هذه العائله الا ان العلماء واثقون انه لايوجد شي يكتشفوه وفي عام 1988 تسلم شتاينبيرغر جائزة نوبل مع ليدرمان وشفارتز

في مطلع الستينات بعد هذه الاعداد الكبيرة من الجسيمات بعد ان كانو يتوقعوا بضعة من الجسيمات الاساسيه التي يتعاملون معها أن جميع الجسيمات الجديده يمكن تفسيرها بوحدات افتراضيه ثلاث فقط أطلقوا عليها ” الكواركات ” وكان هذا اسما غريبا في تلك الفتره

قام غيل موري و يوفال في عام 1961 بتطبيق أفكار التناظر الرياضي على ثلاثين او مايقارب ثلاثين جسيما المعروفه وصنفها في اسر ثمانيه سمية هذه الطريقه الطريقه الثمانيه وقد تنبأ غيل بجسيم جديد أوميغا ناقص لملء فجوه في اسرة من عشرة اعضاء وبعد ذلك بسنه اكتشف هذا الجسيم الناقص واخذ هذا التنظيم علىمحمل الجد

وبسبب الطريقه التي تتواءم بها الكواركات بعضا مع بعض كان من الطبيعي أن يصنفها تصنيفا اتجاهيا فأطلق علي اثنين منها (علوي) و(سفلي) والثالث ( غريب ) لانه كان مكوّنا أساسيا للجسيمات الغريبة ينبغي أن تمل الكواركات شحنة كهربائيه ولكنها خلافا للجسيمات الاخرى تبدو أنها حاملة شحنات كسرية من شحنة البروتون فشحنة الكوارك العلوي (2/3) واشحنة السفلي (1/3-) لم يسبق ان رأى العلماء شحنة سالبه ولذا رفض العلماء التصديق بذلك مع هذا كانت قوانين الكواركات البسيطة تعلل خصائص الهادرونات المعروفة كلها أما الباريونات فهي ثلاثيات كواركية فالبروتون ذو كواركين سفليين وكوارك علوي . والميزونات هي أزواج من كوارك مضاد .

كان من الصعب تقبل فكرة وجود طبقة من المادة تحمل شحنه كسريه لذلك روج عن فكرة الكواركات انها نهج رياضي بحت جعل كل شي يبدوا صحيحا لذا قال اغلب علماء الفيزياء ان الكواركات ليس لها وجود حقيقي وايضا اكتشاف الأوميغا الناقص الذي يعد انتصار لنظريه الكواركيه فهو ايضا مأزق فبموجب قانون كمومي هو مبدأ الكواركيه لباولي لايمكن أن يكون جسيمان شبيهان بالكوارك في حالة وحده داخل جسيم اكبر ومع ذلك فإن جسيم “أوميغا ناقص ” تالف من ثلاث كواركات غريبه متماثله ظاهريا .


التصنيفات
العلوم الفيزيائية

مـــــا هـــــي الحـــــرارة ؟

ஐ¦¦ مـــــا هـــــي الحـــــرارة ؟
تعليم_الجزائر
الحرارة
تعليم_الجزائر
كالوريك Caloric
تعليم_الجزائر

اعتقد الناس في زمن من الأزمان أن الحرارة نوع من السائل الذي يمد من الأجسام الساخنة إلى الأجسام الباردة .
وكان هذا السائل الخيالي يدعى (( كالوريك Caloric )) .
وفي هذه الأيام أصبحنا نعرف أن الحرارة ما هي إلا حركة مستمرة للذرات والجزيئات في الأجسام .
ففي الهواء مثلا تتحرك الذرات والجزيئات بحرية .
فإذا تحركت بسرعة نقول إن درجة حرارة الهواء عالية أو إن الهواء حار .
أما إذا تحركت ببطء كما هو الحال في يوم بارد نشعر أن الهواء رطب جدا .
والذرات والجزيئات لا يمكن أن تتحرك بحرية متساوية في كل السوائل والمواد الصلبة .
ولكن الحركة موجودة على أي حال .
وحتى في درجة حرارة الجليد الذائب تكون الجزيئات في حركة دائمة .
مثلا ذرة الهيدروجين في درجة الحرارة هذه تتحرك بسرعة 1950 مترا في الثانية .
ففي 16 قدم مكعب من الهواء تحدث ألف مليارا اصطدام في الثانية ما بين جزيئات الهواء .
إن الحرارة ودرجة الحرارة ليستا واحدا فالمدفأة الغازية الكبيرة ربما لا تكون أشد حرارة من المدفأة الصغيرة .
ولكنها من الممكن أن تقدم حرارة أكثر لأنها تحرق كميات أكبر من الغاز .
فالحرارة هي شكل من أشكال الطاقة .
وعندما نقيس الحرارة نقيس الطاقة .
والكميات الحرارية تقاس بالسعرات أو الكالوري .
فالسعرات أو الكالوري على المستوى الذي أوصلته إليه الطاقة الحرارية التي يحتويها الجسم .
ودرجة الحرارة تقاس بواسطة موازين الحرارة .
ويعبر عنها بالدرجات .
وعندما يتواجد جسمان معا .
وليس هناك ممر للطاقة الحرارية بينهما نقول أنهما في نفس درجة الحرارة .
ولكن إذا خسر أحدهما طاقته الحرارية .
أي أصبحت جزيئاته بطيئة بينما ربح الآخر بعض الطاقة الحرارية أي تحركت جزيئاته بسرعة .
نقول أن الحرارة قد انتقلت ومرت من الجسم الأسخن إلى الجسم الأبرد .
وإن الجسم الأول كانت درجة حرارته أعلى من الثاني .


التصنيفات
العلوم الفيزيائية

مـــعـدن النــحــاس تاريخ وحضارة

قال تعالى : (آتوني زبر الحديد حتى إذا ساوى بين الصدفين قال انفخوا ، حتى إذا جعله ناراً قال آتوني أفرغ عليه قطراً) [ سورة الكهف : 96]
أمرذي القرنين بأن يأتوه بقطع الحديد الضخمة ، فآتوه إياها ،
فأخذ يبني شيئاً فشيئاً حتى جعل ما بين جانبي الجبلين من البنيان
مساوياً لهما في العلو ثم قال للعمال : انفخوا بالكير في القطع الحديدية الموضوعة بين الصدفين فلما تم ذلك وصارت النار عظيمة ،
قال للذين يتولون أمر النحاس من الإذابه وغيرها: آتوني نحاساً مذابا
أفرغه عليه فيصير مضاعف القوة والصلابة ،
وهي طريقة استخدمت حديثاً في تقوية الحديد ،
فوجد أن إضافة نسبة من النحاس إليه تضاعف مقاومته وصلابته..

حين يمتــــزج التـــاريخ بالحــــضارة

لابــــد أن نـــــدرك ان لمـــعدن النــحاس أصـــالة..

نعم فحضارة النحاس تــــاريخ ..

وتاريخ النحاس حــــضارة ..

ولكيمياء النحاس بين الحضارة والتاريخ عــــراقه..

تاريخ معدن النحاس :

عرف الإنسان النحاس الذي يوجد في الطبيعة في قطع حمراء نقية مخلوطة بالصخور منذ أكثر من عشرة آلاف عام قبل الميلاد. وهذا النحاس يحتوي على فقاعات هوائية كثيرة ولا يصلح لصنع الأدوات منه. ولقد تغلب سكان حوض الرافدين على هذا العيب وزادوا من صلابة النحاس الطبيعي بالطرق عليه بالحجارة في الألف السابع قبل الميلاد.
وبدأ استخدامه في الأغراض المعيشية منذ حوالي ستة آلاف عام قبل الميلاد. واعتبر هذا التاريخ بداية لعصر حضاري جديد في تاريخ البشرية.
ولقد تعلم الإنسان فن صهر الخامات قبل الألف السادسة قبل الميلاد، وشكلت بذلك الأدوات المعدنية بصب الفلز المصهور في قوالب مصنوعة من الحجر. وكان المصريون القدماء قد استخدموا النحاس في صنع أنابيب لتوصيل مياه الشرب، وأخرى لصرف المياه القذرة والفضلات من المنازل. فقد عثر الأثريون على ألف وثلاثمائة قدم من الأنابيب النحاسية في معبد هرم أبي صير (الأسرة الخامسة 2750-2625 ق.م).
كما عثر على أنابيب مشابهة في آثار قصر كنوسوس بجزيرة كريت (1700-1400 ق.م.). وبمعرفة الإنسان طرق استخلاص النحاس وغيره من الفلزات من خاماتها ظهرت حرف ومهن جديدة. وظهرت طبقة أصحاب المناجم وصهر الخامات والنحاسين. وفي عصر الحضارة الإسلامية،
استخدم النحاس في صناعة العملات كما استخدم أيضا في صناعة أواني الطعام وأوعية السوائل وأدوات الزينة. ولوقت ما، استخدم النحاس على مدى واسع في طلاء قاع السفن الخشبية حتى لا تتعرض للتلف. وكذلك استخدم في صنعة اللحام لمعدن الحديد .

تعليم_الجزائر

ويذكر البيروني من علماء القرن الرابع الهجري / العاشر الميلادي صفة استخدام النحاس كلحام للحديد فيقول في كتابه الجماهر: “لما كان النحاس لحام الحديد قال ذو القرنين “آتوني زبر الحديد حتى إذا ساوى بين الصدفين قال انفخوا حتى إذا جعله نارا قال ائتوني أفرغ عليه قطرا”.
ويستنكر البيروني استعمال النحاس في النقود والدراهم، وأن بعض دراهم النحاس قد تساوي دراهم الفضة، فيقول إن من مكادة الدهر مساواة القطرفية دراهم الفضة في السعر، وإربائها أحيانا عليها، وليست القطرفيات مضروبة من نحاس خلط فيها.

ولقد ثبت حديثا أن الخام الرئيسي للنحاس هو الكبريتيد المزدوج مع الحديد.
أما الخامات الأخرى فهي كبريتيد النحاسوز، وكبريتيد النحاسيك، وأكسيد النحاسيك. ومن خامات النحاس الحجر الأخضر وهو المستعمل في الزينة.

تعليم_الجزائر

ويستخرج النحاس عرضا عند تعدين المعادن الأخرى. وهو يدخل في عدد من السبائك المفيدة، والمستعملة على نطاق واسع، وتتفاوت نسبه في هذه السبائك تفاوتا كبيرا. فالشبهان يتألف أساسا من النحاس والخارصين بنسب مختلفة تعتمد على نوع الشبهان المطلوب، والبرنجات تتألف من سبيكة نحاسية يدخل في تركيبها القصدير. وتستعمل سبائك النحاس والنيكل معا حيث يراد للسبيكة مقاومة
التآكل ..
..
تعليم_الجزائر

ماهو النحاس :

النحاس هو فلزمن احد اهم المعادن ذو لون خاص به، بين الحمرة والبنية، يتميز بلمعان معدني ، مرن لين ، موصل جيد للكهرباء ويستخدم في صنع الاسلاك الكهربائية أما مصهوره، وصفائحه الرقاق جدا فيتميزان بلون أخضر في الضوء النافذ.
وتعطي أملاح النحاس لوناً ازرقا عند اختبارها مع اللهب ,,

تعليم_الجزائر

يوجد النحاس على هيئة خامات منها الكبريتيدات والأكسيدات ونحصل منها على النحاس اما بالتحليل الكهربائي او بالصهر أو بالترشيح ..

تعليم_الجزائر

هذا وتنخفض درجة انصهاره في الهواء، ويعزى أمر الانخفاض في درجة الانصهار إلى تكون أكسيد النحاسوز المنصهر، نتيجة لاتحاد أكسجين الهواء بالنحاس المنصهر.

وجوده في الطبيعة :

يوجد في الولايات المتحده الامريكية – البيرو – كنده – زائير – تشيلي – زامبيا –

تعليم_الجزائر

خواصه :

يأتي النحاس في المجموعة الانتقالية رقم (11) من الجدول الدوري،

تعليم_الجزائر

ورقمه الذري (29)،
ووزنه الذري (63.546)،
ويبلغ وزنه النوعي (8.9)
. وينصهر النحاس عند درجة حرارة حوالي (1083) درجة مئوية،
ويغلي عند درجة حرارة (2567) مئوية.

استخدامات النحاس

عبر التاريخ المدون، استخدم النحاس في صناعة العملات المعدنية والسابائك كما استخدم أيضا في صناعة أواني الطعام وأوعية السوائل وأدوات الزينة. ولوقت ما، استخدم النحاس على مدى واسع في طلاء قاع السفن الخشبية حتى لا تتعرض للتلف.

تعليم_الجزائر

كما استخدام النحاس بكثرة في خطوط وكابلات الكهرباء الخارجية وفي شبكات الأسلاك داخل البيوت وخيوط اللمبات والآلات الكهربائية مثل المولدات والمحركات وآلات ضبط السرعة والآلات المغناطيسية الكهربائية ومعدات الاتصال. كما استخدم أيضا في صناعة المرسبات الطباعية الكهربائية. وتستخدم كميات كبيرة من النحاس في صناعة الحرير الصناعي.

تعليم_الجزائر

كما يستخدم النحاس أيضا في صناعة العديد من الأصباغ وفي صناعة المبيدات الحشرية والمواد المبيدة للفطريات على الرغم من أنه يستبدل بالمواد الكيميائية العضوية الاصطناعية ..

تعليم_الجزائر

يستخدم النحاس في تنقية المياه ومركبات النحاس تسخدم في اختبارات الكيمياءالتحليلية ككاشف فهلنج ..

العـلاج بالنحـاس.. طـب قـديم

استخدمه المصريون القدماء والرومان والازتك منذ الاف السنين في صورة أساور وضمادات لشفاء الامراض بل حتى في أدوات التجميل ومشروبات لعلاج الاوجاع.. انه النحاس أكثر المعادن انتشارا في العالم.

وقد يكون ارتداء الاساور والخواتم وسيلة «علاج نحاسي» ولكن لا يزال الاطباء غير موافقين على هذه الوصفة الشعبية لان تناول جرعات زائدة يمكن أن يسبب الاصابة بالتسمم خاصة وأنه يمكن حصول الجسم على حاجته من النحاس من الغذاء اليومي. ويفضل شباب اليوم وخاصة الرياضيين ارتداء حلي من النحاس تزود الجسم بحاجته من هذا المعدن على تناول مقويات تتضمن النحاس تحسبا لجرعات زائدة ضارة. والنحاس عنصر غذائي أساسي لنشاط الجسم وبناء الانسجة والعظام ويوجد في مختلف أنواع الاطعمة.

وتشير أبحاث الى أن نقص النحاس يسبب مشاكل في الانسجة الموصلة والمفاصل والاصابة بأمراض مثل التهاب المفاصل. وحتى الان لم يثبت بالدليل القاطع أن أساور النحاس التي يرتديها ملايين الناس في مختلف أرجاء العالم تساعد على الشفاء من الامراض. وتشير مؤسسات لصناعة النحاس الى انه لا يوجد دليل حتى الان بأن ارتداء أساور من النحاس يزود الجسم بحاجته من هذا المعدن ولكن البعض يقول انه حتى اذا كان هذا غير صحيح فانه غير ضار.

وحاليا يقول دعاة العلاج بالنحاس ان ارتداء سوار من النحاس لمدة شهر يزود الجسم بنحو 13 ميلجراما من النحاس بأيونات تنطلق في الحامض الاميني ويمتصها الجلد. كما أن أقراصا من النحاس توضع تحت ساعة اليد أو داخل قفاز الجولف تتفاعل مع العرق وتجتذب العناصر اللازمة لعلاج العلل مباشرة. ورغم انتشار استخدام الحلى النحاسية فان أطباء يرفضون ان يطلبوا من مرضاهم ارتداء أساور من النحاس.

تعليم_الجزائر

معلومات أخـ ـرى عن النحاس

فلز ذو لون خاص به، بين الحمرة والبنية، أما منصهره، وصفائحه الرقاق جدا فيتميزان بلون أخضر في الضوء النافذ.
ويأتي النحاس في المجموعة الانتقالية رقم (11) من الجدول الدوري، ورقمه الذري (29)، ووزنه الذري (63.546)، ويبلغ وزنه النوعي (8.9). وينصهر النحاس عند درجة حرارة حوالي (1083) درجة مئوية، ويغلي عند درجة حرارة (2567) مئوية. هذا وتنخفض درجة انصهاره في الهواء، ويعزى أمر الانخفاض في درجة الانصهار إلى تكون أكسيد النحاسوز في المنصهر، نتيجة لاتحاد أكسجين الهواء بالنحاس المنصهر.
خصائص النحاس
النحاس قابل للطرق والسحب، ويتخلف في هذه الصفة عن الفضة والذهب فقط، ويفوق ما تبقى من الفلزات في هذه الميزة. ونظرا لجودة توصيل النحاس للكهربائية والحرارة، إضافة إلى قابليته للطرق والسحب، وكذلك اعتدال ثمنه بات النحاس أكثر العناصر شيوعا في استخدامات الآلات والمعدات على اختلاف أنواعها، وتعدد غاياتها.

تاريخ معدن النحاس :

تعليم_الجزائر

عرف الإنسان النحاس الفطري الذي يوجد في الطبيعة في قطع حمراء نقية مخلوطة بالصخور منذ أكثر من عشرة آلاف عام قبل الميلاد. وهذا النحاس يحتوي على فقاعات هوائية كثيرة ولا يصلح لصنع الأدوات منه. ولقد تغلب سكان حوض الرافدين على هذا العيب وزادوا من صلابة النحاس الفطري بالطرق عليه بالحجارة في الألف السابع قبل الميلاد. وبدأ استخدامه في الأغراض المعيشية منذ حوالي ستة آلاف عام قبل الميلاد. واعتبر هذا التاريخ بداية لعصر حضاري جديد في تاريخ البشرية.
ولقد تعلم الإنسان فن صهر الخامات قبل الألف السادسة قبل الميلاد، وشكلت بذلك الأدوات المعدنية بصب الفلز المصهور في قوالب مصنوعة من الحجر. وكان المصريون القدماء قد استخدموا النحاس في صنع أنابيب لتوصيل مياه الشرب، وأخرى لصرف المياه القذرة والفضلات من المنازل. فقد عثر الآثريون على ألف وثلاثمائة قدم من الأنابيب النحاسية في معبد هرم أبي صير (الأسرة الخامسة 2750-2625 ق.م). كما عثر على أنابيب مشابهة في آثار قصر كنوسوس بجزيرة كريت (1700-1400 ق.م.).
وبمعرفة الإنسان طرق استخلاص النحاس وغيره من الفلزات من خاماتها ظهرت حرف ومهن جديدة. وظهرت طبقة أصحاب المناجم وصهر الخامات والنحاسين. وفي عصر الحضارة الإسلامية، استخدم النحاس في صناعة العملات كما استخدم أيضا في صناعة أواني الطعام وأوعية السوائل وأدوات الزينة. ولوقت ما، استخدم النحاس على مدى واسع في طلاء قاع السفن الخشبية حتى لا تتعرض للتلف. وكذلك استخدم في صنعة اللحام لمعدن الحديد .
ويذكر البيروني من علماء القرن الرابع الهجري / العاشر الميلادي صفة استخدام النحاس كلحام للحديد فيقول في كتابه الجماهر: “لما كان النحاس لحام الحديد قال ذو القرنين “آتوني زبر الحديد حتى إذا ساوى بين الصدفين قال انفخوا حتى إذا جعله نارا قال ائتوني أفرغ عليه قطرا”.
ويستنكر البيروني استعمال النحاس في النقود والدراهم، وأن بعض دراهم النحاس قد تساوي دراهم الفضة، فيقول إن من مكادة الدهر مساواة القطرفية دراهم الفضة في السعر، وإربائها أحيانا عليها، وليست القطرفيات مضروبة من نحاس خلط فيها.
ويشير البيروني إلى قيمة أحد خامات النحاس فيقول “وبزوريان معدن يعرف (بناوكردم) ـ وتعني قناة العقارب ـ” لما فيه من العقارب القتالة يخلص ذهبه أحيانا، ويخلط مع الناس أحيانا، وربما وجدا فيه متمايزين، لكن ذلك النحاس لا يخلو من ذهب فيه، ويخلص منه بالإحراق من كل منا دانق (0, 5 جرام) إلا أن قيمته، لما لم تفضل عن المنفعة ترك، ولم يتعرض له، ثم ليس لذلك النحاس المتروك ذهبه، مزية على غيره في شيء منه “.
ولقد ثبت حديثا أن الخام الرئيسي للنحاس هو الكبريتيد المزدوج مع الحديد. أما الخامات الأخرى فهي كبريتيد النحاسوز، وكبريتيد النحاسيك، وأكسيد النحاسيك. ومن خامات النحاس الحجر الأخضر وهو المستعمل في الزينة.
ويستخرج النحاس عرضا عند تعدين المعادن الأخرى. وهو يدخل في عدد من السبائك المفيدة، والمستعملة على نطاق واسع، وتتفاوت نسبه في هذه السبائك تفاوتا كبيرا. فالشبهان يتألف أساسا من النحاس والخارصين بنسب مختلفة تعتمد على نوع الشبهان المطلوب، والبرنجات تتألف من سبيكة نحاسية يدخل في تركيبها القصدير. وتستعمل سبائك النحاس والنيكل معا حيث يراد للسبيكة مقاومة التآكل.
استخدامات ال نحاس
عبر التاريخ المدون، استخدم النحاس في صناعة العملات كما استخدم أيضا في صناعة أواني الطعام وأوعية السوائل وأدوات الزينة. ولوقت ما، استخدم النحاس على مدى واسع في طلاء قاع السفن الخشبية حتى لا تتعرض للتلف.
كما استخدام النحاس بكثرة في خطوط وكابلات الكهرباء الخارجية وفي شبكات الأسلاك داخل البيوت وخيوط اللمبات والآلات الكهربائية مثل المولدات والمحركات وآلات ضبط السرعة والآلات المغناطيسية الكهربائية ومعدات الاتصال. كما استخدم أيضا في صناعة المرسبات الطباعية الكهربائية. وتستخدم كميات كبيرة من النحاس في صناعة الحرير الصناعي.
كما يستخدم النحاس أيضا في صناعة العديد من الأصباغ وفي صناعة المبيدات الحشرية والمواد المبيدة للفطريات على الرغم من أنه يستبدل بالمواد الكيميائية العضوية الاصطناعية للوفاء بهذه الأغراض.


التصنيفات
العلوم الفيزيائية

سر تماسك النواة

السلام عليكم ورحمة لله وبركاته

الذرة في اليونانية ATOMS تعني غير قابل للتجزئة وتتألف الذرة من النواة والتي تتمركز فيها كل شحنة
وكتلة الذرة وهي ذات شحنة موجبة وتدور حولها الإلكترونات ELECTRONS ذات الكتلة Me=0.000548(u) حيث((u الواحدة الذرية المتبعة في تقدير كتل الجسيمات في الفيزياء النووية )) وشحنةهذه الإلكترونات سالبة وذلك لتأمين استقرار الذرة وهذا ما يعرف بالنموذج الكواكبي الذي فرضه رذرفورد عام 1912 وفسره نيلزبور من بعده .

نعلم أن النواة هو جسيم غير متمركز يتكون من النيوترونات وهي جسيمات غير مشحونة وبروتونات ذات شحنة موجبة لذلك يتبادر فوراً إلى الأذهان السؤال المنطقي التالي ..

كيف يمكن للنواة أن تتماسك بهذا الشكل برغم من تراص البروتونات جنباً إلى جنب و دون تنافر ((مع وجود الشحنة الموجبة))……..؟؟؟؟؟؟؟؟؟

لنرى :

إن القوة التي تتمتع بها النواة تعمل على ربط أجزاء النواة في نقطة واحدة وذلك بغض النظر عن عدد البروتونات الموجودة في النواة و تعتبر هذه القوة واحدة من أقوى أربع قوى في الطبيعة * .

*[ صنفت القوى الأساسية في الطبيعة إلى أربع قوى هي : القوى النووية الشديدة – القوى النووية الضعيفة – القوى الكهرطيسية – القوى الثقالية ]

تسمى هذه القوة بالقوة النووية nuclear force وهي من النوع الشديد ألا أن هذه القوة ذات مدى صغير للغاية ويقدر بالفيرمي(F) – وهي وحدة قياس الأبعاد النووية حيث :

1F=10^-13(cm)=10^-15(m)

وتجدر الإشارة أنه بعد هذه المسافة أي ( 2F ) كحد أقصى تصبح القوة التنافرية repulsive force هي المسيطرة والتي تعمل كحاجز كولوني يصد اقتراب أي جسيم من النوة .

إذاً القوة النووية تعمل على جذب النكليونات معاً وهذه القوة مستقلة عن نوع النيكلون سواءً كان بروتون أو نيوترون , وإن الأجزاء غير المتلامسة لا تؤثر على بعضها أبداً.

إن القوة النووية الشديدة تختلف من نواة إلى أخرى , فتكون هذه القوة من اجل النوى المتوسطة (( Z>25 وz<70 )) ومن أجل النوى الثقيلة تكون أقل.

إذاً نستنتج انه بزيادة عدد البروتونات في النواة يؤدي إلى زيادة قوى التنافر وذلك على حساب القوى النووية وتسمى هذه القوى التنافرية بالقوى الكولونية coulomb force وهي تعاكس في اتجاهها القوى النووية وهي تتناقص مع البعد الوسطي بين البروتونات ,هذا البعد يلاحظ بزيادة عدد النيوترونات حول البروتون

وأنه من اجل كل نواة ذرة ذات عدد محدد من البروتونات هنالك عدد أصغري من النيوترونات لكي لا تصبح قوة كولون كبيرة وبالتالي يؤدي إلى تحطم النواة.