انا ايضا ادرس بالثانية ثانوي علوم تجريبية
اختي ممكن توضحي اكثر لو سمحت
و ماهو الدرس المتعلق بهذا السؤال ؟
انا هنا لمساعدتك اختاه
لكن يجب ايجاد الدالة f لحساب تركيب دالة
لأعضاء المنتدى
التحميل:
من هنـــــــــــــــــــــــا
منقول لأجلكم
والسلام خير ختام
للتحميل من هنا
1-الحركة الدائرية .
2-رسم بيان الدالة cos و sin .
3-رسم بعض الاشكال بالاستفادة من الدوال المثلثية .
4-عمل ساعة ( ومحاكاة حركة عقاربها ).
ملاحظة هامة :
-سأفرض أنك درست الدوال المثلثية .. وتعرف كل الاساسيات عنها .. لن اخوض في أي تفاصيل ( تعلمناها في التعليم الاكاديمي ) , الهدف برمجي بحت .
-أيضا يجب ان تعرف ان ما يهمنا من دوال مثلثية في هذا الموضوع ( الجا و الجتا ) .
————————————————————————————-
-لماذا الدوال المثلثية بالتحديد من بين عشرات الدوال الرياضية؟
الجواب والسر هو أنها دوال دورية .. الدوال المثلثية ( وحتى يكون كلامنا اكثر صحة) دالة الجيب sin و جيب التمام cos هما دالتان دوريتان ودورهما هو 360 درجة
الشكل هو عبارة عن تمثيل لدائرة الوحدة ( التي نصف قطرها = 1 ) ونلاحظ أن قيم الدالتان Sin , Cos تقعان على دائرة الوحدة ذات المعادلة المعروفة .. ومن هنا جاءت تسميتها ) .Jبالدوال الدائرية , ( حسب رواية الدكتور صالح
فلنأخذ الدالة Cos ..
ونمرر لها عدة زوايا مرورا بالصفر وانتهاء بال360 درجة ,
خذ الحاسبة واستنتج القيم .. ستجد ما يلي :
Cos(0) = 1
cos(45)=0.7
cos(60)=0.5
cos(90)=0
cos(135)=-.7
Cos(180)= -1
Cos(210)=-0.8
Cos(270)=0
Cos(330)=0.8
Cos(360)= 1
Cos(400)= Cos(400-360)= Cos(40)= 0.76
ستلاحظ ان قيم الدالة تتناقص من الزاوية صفر الى الزاوية 180 .. ثم تبدأ بالتزايد اعتبارا من 181 الى 360 ..
ونلاحظ أن دور الدالة هو 360 درجة .. بالتالي جتا 400 هو نفسه جتا (400-360) وهو جتا 40 ..
ونلاحظ ايضا ان المجال المقابل للدالة cos هو من -1 الى 1
نفس الامر ينطبق على الدالة Sin .. الفرق هو في فترات التزايد والتناقس .. حيث الدالة جا … تتزايد من 0 الى 90 درجة .. ووتناقص من 90 الى270 ثم تتزايد من 270 الى 360 ..
من هذه الخواص وهي :
1-التزايد والتناقص ( المنتظم ان صح التعبير).
2-الدالة دورية .
3-المجال المقابل يقع بين -1 و 1 .
درس عموميات على الدوال الثانية ثانوي
درس عموميات على الدوال الثانية ثانوي في مادة الرياضيات شعبة تقني رياضي و علوم تجريبية و رياضيات
الكفاءات المستهدفة من درس عموميات على الدوال
تعين مجموعة تعريف الدالة
استعمال الآلة الحاسبة البيانية لرسم منحنى دالة
دراسة تغيرات دالة
التعرف على شفعية دالة
الإنتقال من منحنى إلى آخر ‘ تغير معلم ‘
التعرف على الدالة
دوال مألوفة f إن كانت : مجموع ، جداء أو دالة مركبة
لتحميل الدرس إضغط هنا
و بعد بحث أخر وجدت شرح لاستاذ أخر
اذن لتحميل هذا الدرس إضغط هنا
جا هـ = النسبة بين الضلع المقابل للزاوية هـ والوتر[م]
هنا أسلوب آخر لتعريف الدوال المثلثية عن طريق دائرة
[م] الوحدة (الدائرة التي مركزها نقطة أصل المحورين في المستوي ونصف قطرها الوحدة) حيث يسمح بتمديد قيمة الزاوية لتشمل أي عدد حقيقي وعادة ما تسمى الدوال السابقة في هذه الحالة ” الدوال الدائرية” والبعض يبقى على مسمى الدوال المثلثية. خصائص التناسب تجعل هذا التعريف مكافئ للتعريف السابق عند الاقتصار على الزوايا[م] الحادة موجبة القياس.
كلا من الدالة sin و cos دورية بدوره طولها ولكل واحدة منهما جذرين في الدورة الواحدة وبشكل عام فإن :
من خلال تعريف الدالة tan فإن وباتالي جذورها نفس جذور دالة sin لذلك
باستبدال x,y بالدالتين cos , sin نستطيع تقديم صورة أخرى أكثر فائدة للدوال السابقة كما يلي:
متطابقات التبسيط
وبالتالي فإنه لكل فإن
علاقة الدوال المثلثية بالأعداد المركبة
1) صيغة ديموافر de Moivre’s حيث i هي الوحدة التخيلية, وهو عدد مركب يحقق
3) بالجمع مرة وبالطرح مرة مع تذكر أن نحصل على صيغة للدوال المثلثية بدلالة الدالة الأسية
متطابقات تخفيض قوى الدوال المثلثية
متطابقات مجموع ثلاث زوايا
حالة خاصة