التصنيفات
العلوم الطبيعية والحياة السنة الثالثة متوسط

بحث حول الطاقة الشمسية

الطاقة الشمسية الإشعاعية الحرارية ( التشميس )
أهمية الطاقة الشمسية الإشعاعية الحرارية :
لا يخفى على أحد ما للطاقة الشمسية الإشعاعية من أهمية عظيمة مباشرة وغير مباشرة في مختلف العمليات الحيوية والفيزيائية المولدة لكافة أنواع الحياة على سطح الأرض والعمليات التي تحافظ على استمرارها. ولولاها لتجمد سطح الأرض وانعدمت الحياة عليه وأصبح كوكباً بارداًَ ميتاً.
ولا شك في أن من أهم هذه العمليات تلك التي تحول هذه الطاقة إلى منتجات بيولوجية مفيدة متمثلة في المحاصيل الغذائية والوقود. فسلاسل الغذاء، مهما كانت طويلة ومعقدة تعود في جذورها إلى امتصاص خلايا النبات الخضراء الطاقة الشمسية الإشعاعية واستخدامها في بناء أنسجتها خلال عملية التمثيل الضوئي، وما الوقود المستحاث ( الأحفوري ) من فحم وبترول، وحطب إلا طاقة شمسية إشعاعية مخزونة تتحرر خلال عمليات الاحتراق.
أما من وجهة النظر المناخية، فالطاقة الشمسية الإشعاعية هي المولد الرئيسي لعناصر الطقس والمناخ كافة فلولاها ما تسخن سطح الأرض ولا الهواء، ولتوقف تدفق الرياح وتبخر المياه وهطول الأمطار، وتوقف جريان المياه في الأنهار. إنها القوة المحركة لنظام دورة الغلاف الجوي ومياه البحار والمحيطات، وبالتالي فإنها المحرك لعمليات نقل بخار الماء والطاقة الحرارية وتبادلها بين المناطق والأقاليم على سطح الأرض. ولذلك فإنها بما يعتريها من تحولات وتباينات مكانية وزمنية تعمل بشكل مباشر على تكوين حالات الطقس والمناخ المتنوعة على سطح الأرض.
تعد الشمس بحق المصدر الوحيد للطاقة الحرارية الواصلة إلى سطح الأرض. ولا شك في أن النجوم والقمر والكواكب الأخرى تطلق طاقة حرارية إشعاعية, وكذلك تفعل الأرض, إذ تنطلق طاقة حرارية من باطنها تعرف بالحرارة الأرضية ( geothermal )، ولكن أشكال هذه الطاقة جميعها ضئيلة جداً ومهملة تماماً إذا ما وازنّاها بما يصل سطح الأرض من طاقة شمسية إشعاعية. ويعود ذلك أولاً إلى البعد الشاسع الفاصل بين الأرض والنجوم الأخرى التي نراها تسطع في السماء, إذ يقع أقرب نجم إلى الأرض بعد الشمس، ذلك المعروف بمجموعة ( اُلفاسينتاري alpha centori ) المكونة من ثلاثة نجوم تدور حول بعضها البعض, على بعد يناهز 3,4 سنة ضوئية منها (1), أي ما يعادل 40.7×1210 كم, وهذا ما يزيد عن 260.000 ضعف المسافة بين الأرض والشمس, ويقل التدفق الحراري الأرضي عن 10-5 من الطاقة الشمسية الواصلة إلى سطح الأرض، ويقل ما يشعه القمر عندما يكون بدراً كثيراً عن ذلك.

الشمس :
أوردت العديد من الدراسات ( 2، 3، 4، 5، 6، 7، 8 ، 9 ) معلومات مستفيضة حول بنية الشمس وتركيبها، استقتها من قياسات ومشاهدات قامت بها التوابع الاصطناعية مثل " سكاي لاب " ( مخبر السماءsky lab ) و( نمبوس nimbus7 ) و(هابيل ( habelوغيرها من التوابع والدراسات التي قامت بها وكالة الفضاء الوطنية الأمريكية (Nasa ) حول الشمس. وبينت, أن الشمس نجم متوسط الحجم, مكون من كرة هائلة ملتهبة تبلغ درجة حرارة سطحها حوالي 6000 ْ مئوية ( 6300ه كالفانية) ويبلغ طول قرص قطرها المرئي 1391×310 كم , أي ما يعادل 110 ضعف طول قطر الأرض تقريباً، وتزيد كتلتها عن 1998×2410 طن, أي ما يعادل 333×310 كتلة الأرض البالغة 6×2110 طن.
تتمركز الشمس في وسط المجموعة الشمسية، وتبعد عن الأرض بحوالي 149.6×610 كم وسطياَ (1) أو ما يعادل واحدة فلكية "Astronomical Unit "(25ص 3 ). ويظهر قرصها المرئي من سطح الأرض محصوراً في زاوية صغيرة جداً تتراوح بين30 َ – 32 َ. وتدور حول محورها دورة واحدة كل أربع أسابيع تقريباً، لكنها لا تدور كما تدور الأجسام الصلبة إذ تتفاوت دورتها حول محورها بين 27 يوم عند خط استوائها و30 يوم عند قطبيها.
بنية الشمس:
بينت الدراسات، استناداً إلى التباينات في الكثافة والضغط ودرجة الحرارة السائدة خلال الشمس، إن الشمس تتكون من عدة طبقات متميزة عن بعضها البعض، كما هو موضح في الشكل ( 1 ) ، وهي:
1ـ النواة ( core ):
يقدر طول نصف قطر نواة الشمس بحوالي 23%-28.8% (159.95 ×310-200×310 كم ) من نصف قطرها الكلي وتحتوي على ما يزيد عن40% من كتلتها و15% من حجمها، وتزيد كثافتها عن 10ه-1.35×10ه كغ/ م ،ويتولد خلالها ما يزيد عن 90% من الطاقة الشمسية الحرارية الناتجة عن التفاعلات الذرية التي تندمج خلالها ذرات الهدرجين ( H ) متحولة إلى هليوم ( He ) وطاقة. ويعتقد أن معظم الأشعة فيها مكوناً من الأشعة السينية ( X ) ومن أشعة غاما ( γ ) ، وتقدر درجة حرارتها في مركزها بين 15×610-20×610 درجة كالفانية، وبنحو 7×610-8×610 درجة كلفانية عند أطرافها، ويقدر الضغط فيها بين610- 22 ×610 بار.
2 ـ الغلاف الإشعاعي (Radiative Zone):
تحتل سماكة هذا الغلاف حوالي47% ( 326.9 ×310 كم ) من نصف قطر الشمس. وتقل الكثافة خلاله تدريجياً حتى تبلغ عند أطرافه حوالي 70-120كغ/ م3. وتصل درجة حرارته إلى حوالي 610 درجة كالفانية. وخلاله تشع الطاقة الشمسية نحو سطح الأرض.

3 ـ الغلاف الحملاني (Convective Zone):
تشغل سماكة هذا الغلاف حوالي 30% (208.7 ×310 كم ) من نصف قطر الشمس وتتناقص كثافته إلى حوالي 10-4كغ/ م3 ويصل الضغط فيه إلى أقل من 10-2 بار عند حده الخارجي، تسود خلاله تيارات حملا نية حرارية تنقل الطاقة الشمسية إلى سطح الشمس.

4 ـ الغلاف المرئي "فوتوسفير" (Photosphere ):
يشكل غلاف فوتوسفير الحد الخارجي للغلاف الحملاني، وفي الوقت نفسه يشكل سطح الشمس المرئي ذو اللون الفضي اللامع. ويعرف أحياناً بالغلاف الضوئي (lightSphere of)، وتبلغ سماكته عدةكيلو مترات، وهو المصدر الرئيسي للطاقة الشمسية الإشعاعية الواصلة إلى سطح الأرض, وتناهز درجة حرارته 6000 ْ كالفانية وتقل كثافته عند الحد الخارجي عن 10 كغ/ م3.
يظهر الفتوسفير مبرغلاًً ، تغطية خلايا حرارية حبيبية لامعة (Granules) غير منتظمة تمثل قمم التيارات والفورانات الحملانية الجارية خلال الغلاف الحملاني، تتراوح أقطارها بين 1000-3000 كم، ولا تزيد مدة بقاء كل منها عن بضع دقائق. وعلى الرغم من تشكل الفوتوسفير من غازات ضئيلة الكثافة فإن حده الخارجي محدد بوضوح، فالغازات المكونة له شديد التأين تمكنه من التصرف كجسم كتيم للأشعة قادر على امتصاص وإطلاق الأشعة الشمسية باستمرار.
وتعد البقع الشمسية (Sunspots ) من المظاهر الهامة التي تعتري سطح الفوتوسفير، وتعرف أيضاً بالكلف الشمسي وتعرف أحياناً بالمسامات (Pores ). وهي بقع داكنة اللون نسبياً، لانخفاض درجة حرارتها عما حولها بحوالي 1000 ه -1500 ه مئوية، إذ تقدر درجة حرارتها بين4000 ْ- 4500 ْ كالفانية. ولا تتعدى مساحتها مساحة الخلايا الحملانية، لكن تتراوح أطوال أقطار الكبيرة منها بين 410- 510 كم ، ويمكن مشاهدتها عند الغروب بالعين المجردة. ويحيط بالبقع الشمسية خلايا حرارية (Faculae ) لها نفس أبعادها لكنها أشد حرارة منها ولمعاناً ويشتد خلالها الإشعاع الشمسي ويتعاظم ليعوض النقص في الإشعاع الحاصل عند تكاثر البقع الشمسية.
تدوم البقع الشمسية عدة أيام، وتختلف أعدادها وفقاً لدورات زمنية منتظمة تتكرر كل 11 سنة وسطياً وبعضها يصل إلى 22 و89 وحتى 178 سنة. تتميز البقع الشمسية بقوة حقولها المغناطيسية, وبكونها مراكز للأقاليم المضطربة والناشطة على سطح الشمس. وتؤدي حتماً إلى اضطراب في الغلاف المغناطيسي الأرضي.

5 ـ (Reversing Layer ):
تمثل هذه الطبقة الطبقة الأولى من الغلاف الجوي الشمسي, تتكون من غازات شفافة, تبلغ سماكتها حوالي 560 كم فوق الفوتوسفير, وتقل درجة حرارتها إلى حوالي 4200 ْ كالفانية، ولا تلاحظ إلا في أوقات كسوف الشمس الكلي أو باستخدام أدوات تحجب قرص الشمس.
يلاحظ خلال الطبقة الانقلابية خطوط غامقة اللون, تعرف بخطوط فرون هوفر ( Fraunhofer Lines) نسبة للعالم الألماني جوزيف فرون هوفر الذي اكتشفها.وتشكل هذه الطبقة نطاقاً انتقالياً بين الفوتوسفير وغلاف كروموسفير التالي.
6 ـ طبقة كروموسفير( Chromosphere):
تظهر طبقة كروموسفير فوق الطبقة الانقلابية على شكل هالة تحيط بالشمس تعرف أحياناً بالطبقة الملونة (Colorsphere ) تناهز سماكتها 1000 كم, متكونة من غازات ضئيلة الكثافة من شوارد الهدرجين والكالسيوم (Ca ), وتتزايد درجة حرارتها تدريجياً باتجاه الخارج من 5000 ْ كالفانية عند قاعدتها إلى حوالي 20.000 ْ كالفانية عند قمتها. وتمثل كروموسفير الطبقة الثانية من الغلاف الجوي الشمسي. ولا يمكن مشاهدتها إلا في أوقات الخسوف الشمسي فقط.
وبين الوقت والآخر تثور خلال كروموسفير فورانات أو إندلاعات شمسية ( Flares) تصل ارتفاعها آلاف الكيلومترات. و عادة يزيد عددها عن 100 إندلاع يومياً، تتخللها عدة إندلاعات عظيمة (Prominences ) تحدث سنوياً. تعد هذه الإندلاعات مصدراً لتدفقات شديدة من الأشعة فوق البنفسجية والأشعة السينية ومختلف أطياف الأشعة، يصاحبها فيض عظيم من البلازما الشمسية المشحونة بطاقة كهربائية كبيرة، ويذكر أنه في يوم 12 أيار / مايو من عام 1980 حدث اندلاع عظيم دام حوالي 40 دقيقة غطى مساحة تقدر بنحو 2.5×10 9 كم2 من سطح الشمس (7).
7 ـ طبقة كورونا ( Corona):
تقع الكرونا فوق طبقة الكروموسفير, مشكلة الطبقة الخارجية للغلاف الجوي الشمسي. ولا يمكن مشاهدتها أيضاً إلا في أوقات كسوف الشمس الكامل. وتتكون من البلازما الشمسية أو ما يعرف بالرياح الشمسية (Solar Wind ). وهي أقل كثافة من الكروموسفير, تتألف من 91.3% بروتونات و8.7% ذرات هيليوم متأنية تصاحبها إلكترونات وأنواع مختلفة من الأشعة الشمسية. تتراوح درجة حرارتها بين 10 6-2×10 6 درجة كلفانية (7), تنطلق الرياح الشمسية بسرعة هائلة تزيد عن 500 كم/ثا, وتزيد عن ذلك في أوقات الإندلاعات الشمسية الحاصلة من طبقة كروموسفير. تنتشر الكرونا خلال مساحات شاسعة في الفضاء الكوني متعدية حدود المجموعة الشمسية. ويعرف الحد الذي تصل إليه بالحد الشمسي.
والحقيقة فإن الأرض تقع في الأجزاء الخارجية من الغلاف الجوي الشمسي, ولذلك يدخل الغلاف المغناطيسي الأرضي في صراع دائم مع الرياح الشمسية التي تضغط عليه باستمرار لكنه يتمكن من صدها ومنعها من الوصول إلى سطح الأرض.

تولد الطاقة الشمسية:
تشبه الشمس بفرن ذري عظيم, تتحول في نواتها ذرات الهيدرجين ( H11) بواسطة الاندماج الذري إلى ذرات هيليوم ( 24He) مطلق طاقة حرارية هائلة ( E ) ونترونات (n01) وبزوترونات ( +e )وغيرها من الجسيمات الناتجة عن تفكك ذرات الهيدرجين واندماجها.
يبدء الاندماج الذري باندماج نويات(11H) منتجة نظائر الهيدروجين ديوتيريوم (12H)وتريتوريوم (31H)وتحولها إلى ذرات هليوم.

11H + 11H 21H + e
21H + 21H 31H + 11H
21H + 21H 32He + 10n + E
21H + 31H 42He + 10n + E
وتتولى الاندماجات الذرية متزامنة مع بعضها البعض وتستمر، باستمرارها يستمر تدفق الطاقة الشمسية الحرارية الهائلة . ويتم إنتاج الطاقة وفقاً للنظرية النسبية لاينشتاين (ص10) E=mc2 erg
هنا : ـ E= الطاقة الحرارية المتدفقة ( ايرج أو حريرة)
ـ m= كتلة الذرات المندمجة
ـ c= سرعة الضوء (300× 10 8 سم /ثا)
لذلك فإن ما ينتح اندماج ذرات غرام واحد من الهدرجين يساوي 9×10 :إيداج, أي ما يعادل 21.5×10 12 حريرة /ثا.
واستناداً إلى تقديرات العالم جاموGamo (20) فإن حوالي 800×10 6 طن من الهيدرجين تتحول في نواة الشمس من طاقة حرارية بحوالي 17.2×10 24 إيداج/ثا أي حوالي 17.2×10 27 حريرة/ثا. ويمكن أن نتصور مقدار هذه الطاقة الحرارية الهائلة المنبعثة من إن إندماج ذرات هذه الكتلة الهدروجينية إذا علمنا أن الإندماج الذري لكيلو غرام واحد منها ينتج طاقة تعادل ما ينتجه احتراق 20×10 6 كغ من الفحم الحجري.

(1)ايرج (erg): واحدة لقياس الطاقة الحرارية والعمل في واحدة (cgs), وكل
1 حريرة =4.187×10 7 ايرج وكل 1 جول أو1 واط = 10 7 ايرج
ٍطيف الأشعة الشمسية وطبيعتها:
تشع الشمس طاقتها الإشعاعية على شكل طيف واسع من أمواج مشحونة كهربائياً ومغناطيسياً, تعرف بالأمواج الإشعاعية الكهرومغناطيسية (Electromognatic radiation waves )، ذات أطول مختلفة
وترددات متعددة, تنطلق بسرعة كبيرة واحدة قاطعة مسافة واحدة خلال واحدة زمن(1 ثانية) تعادل 300×10 3 كم/ثا, وهذا ما يعادل سرعة الضوء في الثانية الواحدة. ولا تتأثر سرعة انتشارها بوجود الغلاف الجوي للأرض لأنه بالنسبة لها رقيق جداً إلى حد يمكن اعتبارها وكأنها تنتشر في فضاء مفرغ من الهواء. وعادة ما تصنف الموجات الإشعاعية الكهرومغناطيسية بطول أمواجها وترددها خلال مسافة زمنية محددة ( 300×10 3 كم/ثا ) .
يقصد بطول الموجة المسافة الفاصلة بين قمتي أو قعري موجتين إشعاعيتين متتاليين (الشكل ). وتستخدم الوحدات المترية وأجوائها في قياسها، فتقاس الطويلة منها بواحدة المتر (م) بينما تقاس القصيرة منها بواحدة (المايكرومترUM)مكم ويساوي 10-6 م أو النانومتر(nm)ويساوي 10-9 م أو الانجستروم انج ويساوي 10-10م
ويعني تردد الأمواج الإشعاعية الكهرومغناطيسية عدد هذه الأمواج التي تعبر حداً معيناً خلال ثانية من الزمن أو بكلمة أخرى يعبر عن عدد الأمواج الإشعاعية الحاصلة خلال المسافة التي تقتطعها هذه الأمواج خلال واحدة الزمن ( ثانية واحدة ). ويمكن التعبير عن هذه المسافة "بالمسافة الزمنية" ولأن هذه الأمواج تنطلق بسرعة واحدة, هي سرعة الضوء قاطع مسافة 300×10 3 كم بالثانية الواحدة, فيعنر عن هذه المسافة الزمنية "بالثانية الضوئية",وهي أصغر وحدة في ما يعرف بوحدات المسافة الضوئية, إذاً فالثانية الضوئية ومضاعفاتها ( دقيقة, ساعة, يوم, سنة ضوئية ) ليست واحدات لقياس الزمن, بل هي واحدات لقياس المسافات, تستخدم في قياس المسافات الشاسعة في الفضاء بين الاجرام السماوية, كما هو الحال في استخدام الوحدة الفلكية المذكورة سابقاً .
تظهر الأمواج الطويلة خلال المسافة الزمنية (ثانية ضوئية) التي تقطعها أقل تردداً من الأمواج القصيرة, وهكذا فكلما كبرت أطوال الأمواج قل ترددها وكلما قصرت ازداد ترددها. إذن توجد علاقة عكسية بين أطوال الأمواج وترددها، ويمكن حساب تردد الأمواج الإشعاعية الكهرومغناطيسية بالعلاقة التالية:

(1)حيث انه لا يوجد لكل من الميكرومتر (um) والآنجستروم (A) متفق عليه بين المؤسسات العلمية العربية، نقترح هنا استخدام رمز(مكم) و(آنج) لكل منهما على التوالي.ويساوي10-10م.
C

λ

( هيرتز Hz )موجة/ثا F=
هنــا:
F= تـردد الأمواج الشـعاعية (موجة /ثا)
C = المسافة التي تقطعها الأمواج الإشعاعية للكهرومغناطيسية (1ثانية ضوئية )=300×10 3 كم/ثا
λ = حرف إغريقي (لامبداLambda ) يمثل طول الموجة الإشعاعية الكهرومغناطيسية
وتقاس كل من C و λ بنفس الواحدات المترية وأجزائها
1 كيلو متر (كم) =10 3 متر) م) =10 5سنتيمتر(سم) =10 6 ميليمتر (مم) =10 9 مايكرومتر (مكم) =10 12 نانومتر (نم) =10 13انغستروم (آنج) =10 15
الجدول رقم /1/ : أمواج الأشعة الشمسية الكهرومغناطيسية وأقاليمها الرئيسية
وأطوالها ( ) مقاسـة بالنانومتر (nm.نم)
وترددهـا (F) مقاسـة بالهرتـز (Hz.هـز )
أقاليم أمواج الأشعة الشمسية الكهرومغناطيسية
طول الأمواج (λ)
(nm.نم)
تـردد الأمـواج (F)
(Hz.هـز)
أشـعة جاما الكونية
10-4 – 10-2
3×1210 – 3×1910
الأشـعة السـينية X
أشـعة سينية قاسية HX
10-2 – 0.1
3 ×1910 – 3×1810
أشـعة سنية ليند SX
0.1 – 1
3 × 1810 – 3×1710
الأشـعة فوق البنفسجية UV
أشـعة فوق بنفسجية EUV
1 – 200
3×1710 – 3×1.5 × 1510
أشـعة فوق بنفسجية بعيدة FUV
200 – 300
1.5 × 1510 – 1510
أشـعة فوق بنفسجية قريبة NUV
300 – 320
1510 × 9.4 × 1410
الأشـعة الضوئية البيضاء المرئية VL
أشـعة سـوداء
320 – 380
9.4 × 1410 – 7.89 × 1410
أشـعة بنفسجية
380 – 420
7.89 × 1410 – 7.14 × 1410
أشـعة زرقـاء
420 – 490
7.14 × 1410 – 6.12 × 1410
أشـعة خضـراء
490 – 540
6.12 × 1410 – 5.56 × 1410
أشـعة برتقاليـة
540 – 590
5.56 × 1410 – 5.08 × 1410
أشـعة حمـراء
590 – 650
5.08 × 1410 – 4.62 × 1410
الأشـعة تحت الحمـراءIR
650 – 760
4.62 × 1410 – 3.95 × 1410
أشـعة تحت الحمـراء قريبة NIR
أشـعة تحت حمـراء بعيدة FIR
607 – 310
3.95 × 1410 – 3×1410
الأشـعة الصغيـرة MW
310 – 610
3 × 1410 – 3 × 1110
أمـواج الـرادار
510 – 710
3 × 1210 – 3 × 1010
أمـواج التلفزيـون
610 – 910
3 × 1110 – 3 × 810
أمـواج الراديـو
810 – 1010
3 × 910 – 3 × 710
1010 – 1210
3 × 710 – 510

C

λ

عن Chanllet (1986) Dickinson and Cheremisinoff (1980)
وحسب تردد الأمـواج باستخدام المعادلة F= حيث C= نانومتر (نمnm )
أما بالنسبة لتردد الأمواج ( F ), فقد اتفق دولياً على استبدال وحدة "موجة/ثانية"بواحدة (هيرتزHz, Hertz ) ومضاعفاتها:
كيلو هيرتز ( KHz ) ويعادل 10 3 Hz,ميجا هيرتز (MHz ) ويعادل 10 6 Hz, وجيجا هيرتز(GHz ) وتعادل 10 9 Hz.
ويبين الجدول (1) أطوال أمواج طيف الأشعة الكهرومغناطيسية وترددها وأقاليمها المختلفة.
تتباين قدرة الطاقة التي تحملها أمواج الأشعة الكهرومغناطيسية, فالأمواج القصيرة تحمل طاقة أكبر من الأمواج الطويلة, لقد تبين أن انتقال الطاقة عبر أمواج الأشعة الكهرومغناطيسية يجري على شكل سيل من كميات صغيرة أو حزم صغيرة من الطاقة متراصة وراء بعضها البعض تعرف بالفوتونات (Photons ), لها صفات الذرات وفي الوقت نفسه ليس لها كتلة, ولها صفات الأمواج ذات عزم حركي لكنها لا تحمل شحنات كهربائية. (7 ص56 ) إذن، ففوتوناتالإشعاعية الكهرومغناطيسيةالقصيرة – التي تقل أطوالها عن320 نم – تحمل طاقة كبيرة أكبر مما تحمله فوتونات الأمواج الطويلة, تمكنا من الفتك بالخلايا الحية الحيوانية والنباتية, ولحسن حظها فإن ما تشعه الشمس من هذه الأشعة يقل عن 7% من مجموع الطاقة التي تشعها, ولا يصل سطح الأرض سوى النذر اليسير جداً منها على شكل أشعة فوق البنفسجية .
أقسام طيف الأشعة الشمسية الكهرومغناطيسية:
تقسم الدراسات طيف الأشعة الشمسية الكهرومغناطيسية إلى عدة أقسام تعرف بالأقاليم (Regions ) كما هو مبين في الجدول /1/ والشكل/ 2/ وهي:
1- إقليم الأشعة الكونية: ويتمثل بأشعة (جاما Gama ) وغيرها من الأشعة التي تقل أطوال أمواجها عن 0.01 نم.
2- إقليم الأشعة السينية (x-rays ) : وتتراوح أطوال أمواجه بين 0.01-1 نم. ويضم الأشعة السينية القاسية ( HX", Hard x ray") والأشعة السينية الينة (SX", soft x ray" ).
3- إقليم الأشعة فوق البنفسجية ( Ultra Violet"UV") : وتتراوح أطوال أمواجه بين 1-320 نم. ويقسم إلى ثلاثة أجزاء تسمى وفقاً لموقعها من طيف الأشعة المرئية البيضاء الذي يليها,وهي: الأشعة فوق البنفسجية المتطرفة ( "EUV" Extrem Ultra Violet) الأشعة فوق البنفسجية البعيدة ( "FUV"Far Ultra Violet) الأشعة فوق البنفسجية القريبة (Ultra Violet"NUV" Near ). ويكون هذا الإقليم مع إقليم الأشعة السينية وإقليم أشعة جاما حوالي 7 % من مجموع الطاقة الشمسية الإشعاعية, وهي أشعة ضارة وفتاكة.
4- إقليم الأشعة المرئية البيضاء( White Visable Ray) ( 3ص 67-77 )وتتراوح أطوال أمواجه بين 320-760 نم. ويتكون من مزيج من الأشعة البنفسجية والزرقاء والخضراء والصفراء والبرتقالية والحمراء (الجدول 1), ويضاف إليها ما يعرف بالأشعة السوداء لعدم استطاعة العين رؤيتها ( 11ص49 ). وتشكل الأشعة المرئية البيضاء حوالي 44% الطاقة الشمسية الإشعاعية وهي أشعة ذات طاقة حرارية وضوئية كبيرة تلعب دوراً رئيسياً في تسخن سطح الأرض وفي مجريات الطقس والمناخ السائد عليه.
5- إقليم الأشعة تحت الحمراء ( Infra Red Ray): وتتراوح أطوال أمواجه بين 760-10 6نم, وينقسم إلى جزئين وفقاً لموقعها من طيف الأشعة المرئية البيضاء السابقة له,هما: الأشعة تحت الحمراء القريبة (Infra Red"NIR" Near)وتشكل 37%من مجموع الطاقة الشمسية, والأشعة تحت الحمراء البعيدة (Far Infra Red FIR"") وتشكل حوالي 11% من مجموع الطاقة الشمسية, لا تتمكن العين من رؤية الأشعة تحت الحمراء, ولكن يمكننا أن نشعر بحرارتها.
6- إقليم الأشعة الصغيرة ( "MWR" Micro Waves Ray) وتتراوح أطوالها بين 10 5-10 7 وتشكل أقل من 1% من مجموع الطاقة الشمسية.
7- إقليم أمواج الرادار (Radar Waves): وتتراوح أطواله بين 10 6- 10 9 نم
8- إقليم أمواج التلفزيون (TV Waves): وتتراوح أطواله بين 10 8- 10 10 نم
9- إقليم أمواج الراديو (Radio Waves): وتتراوح أطواله بين 10 10- 10 12 نم
إقليم الأشعة الشمسية المرئية البيضاء والألوان:
يتبين لنا أن الأشعة الشمسية المرئية البيضاء, متكونة من مزيج من الأشعة الملونة حين تعبر خلال موشور زجاجي,فتخرج منه متفرقة ومنكسرة, ويزداد انكسارها عكساً مع طول أمواج كل منها, فتظهر معكوسة الترتيب, الأشعة البنفسجية في الأسفل لأنها أشد انكساراً تليها الزرقاء ثم الخضراء والصفراء والبرتقالية وتظهر الأشعة الحمراء في الأعلى لأنها أقل انكساراً(الشكل 3). ويحدث ذلك أيضاً في ظاهرة قوس قزح(Rainbow). وعادة يتشكل قوس قزح عندما تهطل الأمطار في جزء من السماء وتكون ساطعة في الجزء الآخر منها, وأحياناً يحدث خلال قطيرات الما المتناثرة فوق مساقط المياه وفوق نوافير المياه أيضاً, فتقوم قطيرات الأمطار والقطيرات المتناثرة بدور الموشور الزجاجي.فعندما تدخل الأشعة الشمسية البيضاء قطيرات الماء تقل سرعتها وتنكسر وتتفلاق إلى أطياف أشعة ألوانها الأساسية. وعندما تصطدم هذه الأشعة بمؤخرة القطيرات ترد خارجة منها منكسرة ومتفرقة أيضاً مشكلة قوساً بديعاً من الألوان البنفسجية والزرقاء و الخضراء والصفراء والبرتقالية والحمراء(7).
تتمكن العين من رؤية الأشعة الشمسية البيضاء. وأطياف أشعتها الملونة لأن هذه الأمواج الكهرومغناطيسية تثير نهايات الأعصاب البصرية المنتشرة على شبكية العين على شكل عصيات أو أقماع بصرية,فتقوم بإرسال إشارات للدماغ تمكننا من إدراك الألوان ورؤيتها. تمكن العصيات العين من التفريق بين الضوء والظلام, ومشاهدة اللوتين الأبيض والأسود فقط, لأنها لا تستطيع التميز بين أشعة الألوان المختلفة, بينما تستطيع الأقمار استشعار الأشعة الملونة التي تنحصر أطوال أمواجها بين 380-670 نم والتميز بينها, فتمكن العين من رؤية الألوان جميعها, ولا تستطيع الأشعة التي تقل أطوال أمواجها عن 380 نم أو تزيد عن 670 نم إثارة نهايات الأعصاب البصرية لذلك لا تراها العين.
فالحقيقة فألوان الأشياء التي تراها العين ليست إلا أشعة كهرومغناطيسية مختلفة أطوال الأمواج منعكسة على سطح هذه الأشياء. فمثلا عندما تسقط أشعة الشمس الضوئية على سطح أخضر اللون, يمتص هذا السطح أشعة الألوان كلها عدا أشعة اللون الأخضر التي يعكسها فتراها العين. وهكذا بالنسبة لكل الأشياء الملونة, فسطوحها تمتص طيف الأشعة المرئية الواصل إليها كله وتعكس الأشعة الموافقة للونها فقط.
الشمس المتلونة والسماء الزرقاء:
أما بالنسبة للشمس, فيعود لونها الأبيض اللامع في وسط النهار إلى شدة إشعاعها في هذا الوقت وسقوط أشعة ضوئها المرئية جميعها على الأقماع البصرية للعين بشدة متساوية تقريباً فلا تستطيع التمييز بينها ونستشعرها كأنها أشعة واحدة بيضاء. بينما عند شروق الشمس أو غروبها تخترق الأشعة الشمسية الغلاف الجوي بزاوية ضعيفة, حوالي 4 5درجات قاطعة حيزاً كبيراً منه أكثر سماكة من الحيز الذي تقطعه وقت الظهر بحوالي 12 ضعف, فخلال هذا السماكة الكبيرة تتبعثر الأشعة القصيرة (البنفسجية والزرقاء و الخضراء) بواسطة جزيئات الهواء الدقيقة الأصغر منها حجماً بشكل انتقائي في كل الاتجاهات خلال الغلاف الجوي. بينما تتمكن الأشعة الصفراء والبرتقالية والحمراء من الدخول إلى عين الناظر مظهرة الشمس بلون أصفراء- برتقالي زاهي, وفي حال وجود جسيمات وذرات غبار معلقة في الهواء, تزيد أقطارها قليلاً عن طول أقطار جزيئات الهواء, تتبعثر الأشعة الصفراء وتظل الأشعة البرتقالية والحمراء مظهرة الشمس بلون برتقالي-أحمر, وإذا تواجدت الجسيمات بكميات كبيرة تتبعثر أشعة ضوء الشمس كلها عدا الأشعة الحمراء فتظهر الشمس بلون أحمر وذلك ما يحدث عند انفجار البراكين التي تملوء السماء بجسيمات دقيقة, أو فوق المحيطات حيث يكون الهواء مترعاً بذرات بلورات الملح الدقيقة وذرات بخار الماء, وأحيانا إذا كانت أحجام الجسيمات متجانسة تعمل على بعثرة الأشعة الشمسية الضوئية بشكل انتقائي مظهرة الشمس بعدة ألوان, حتى في منتصف النهار تبدو الشمس برتقالية أو خضراء أو حتى زرقاء ( 3ص 67-73 ).
ومن الملاحظ أنه خلال عمليات التبعثر المذكور في مختلف أشكاله, حتى في منتصف النهار, تعمل جزيئات الهواء دائماً إلى بعثرة الأشعة الشمسية الضوئية القصيرة جداً, البنفسجية والزرقاء و الخضراء, انتقائياً في كافة الاتجاهات في الغلاف الجوي, بالإضافة إلى ذلك فإن المخاريط البصرية في العين شديدة الحساسية لهذه الأشعة ما يجعل الشماء تبدو لنا زرقاء في الاتجاهات كلها وفي الأحوال جميعها من حساب شدة الطاقة الإشعاعية ومقدارها كمياً.

الوحدات المستخدمة في قياس الطاقة الإشعاعية الحرارية:
عادة تستخدم واحدات القوة ( Power)في قياس الطاقة الإشعاعية, وتعرف القوة بأنها "كمية الطاقة المنقولة خلال واحدة الزمن ", لذلك توجد عدة واحدات مستخدمة في قياس الطاقة الإشعاعية, أهمها وأكثرها استخداماً في دراسات الطقس والمناخ هي وحدة السعر الحراري أو حريرة ("Cal" Colorie ) ويعرف السعر الحراري "بأنه كمية الطاقة الحرارية المتطلبة لرفع درجة حرارة غرام واحد من الماء درجة مئوية واحدة, من14.5 إلى 15.5 درجة مئوية وتساوي 4.4855×10 إيرج أو 4.1855 جول." وعند استخدامها في قياس الطاقة الإشعاعية فإنها تعبر عن مقدار الطاقة التي تشعها أو تمتصها واحدة المساحة ( 1سم2 ) من سطح ما خلال واحدة زمن ( ثانية, دقيقة, ساعة, يوم,……الخ ). وتكتب كما يلي : " غرام –سعر حراري/سم2 ز أو حريرة/سم2 ز وفيما بعد اقتراحات واحدة (لانجلي Ly, Langley ) عوضا ًعن غرام –سعر حراري /سم2 ز فأصبحت واحدة القياس لانجلي /ز, وذلك تخليدا للعالم صومائيل لانجلي ( ,Samual P. Langley1906-1834) الذي قدم الكثير من الإسهامات الرائدة في أبحاث الأشعة الشمسية. وكلا الواحدتين تستخدم الآن بشكل متبادل, وعادة, عند حساب الطاقة الإشعاعية تعتمد الدقيقة واحة للزمن, فتصبح واحدة قياس غرام-سعر حراري /سم2 أو لانجلي/د ويمكن استخدام( الكيلو غرام –سعر حراري /م2د )أو كيلو لانجلي/د المعادلة إلى 100سعر حراري /سم2د أو 1000 لانجلي /د على التوالي.
وتفضل بعض الدراسات استخدام واحدة الإرج (1023892×10حريرة) أو الجول (0.2389 حريرة) أو الواط (1جول/ثا=0.23892 حريرة ). وحديثاً تمثيل الدراسات وخاصة في المجالات الهندسية إلى استخدام واحدة "واط/م2" (1.43352 -3 لانجلي/د)وبذلك فإن واحدة لانجلي/د يعادل ( 697.6 واط/م2).
تشكل الطاقة الحرارية وطرق انتقالها:
تتولد الطاقة الحرارية في بادئ الأمر, عندما تمتص الأشياء, مهما كان نوعها. الطاقة الشمسية الإشعاعية الواصلة إليها على شكل أمواج كهرومغناطيسية وتحولها إلى طاقة حرارية تخزنها في داخلها فتزيد درجة حرارتها ثم تعود وتطلقها مرة أخرى والأمر نفسه يحدث عندما نعرض أنفسنا إلى نار المدفاة, فعندما تمتص أجسامنا الأمواج الكهرومغناطيسية.

عمليات الإشعاع ونقل الطاقة الحرارية وتبادلها عند سطح الأرض:
عندما تصل الطاقة الشمسية الإشعاعية تحملها فوتونات أمواج الأشعة الكهرومغناطيسية من سطح الشمس عبر الفضاء إلى الأرض تدخل في عمليات عديدة من التحولات والتبدلات, تبدأ بامتصاص سطح الأرض والغلاف الجوي والأشياء والأجسام فيهما لهذه الطاقة, ومن ثم إشعاعها مرة أخرى لبعضها البعض وتتبادلها فيما بينها.
إذن عند دراسة عمليات الإشعاع الجاري على سطح الأرض وفي الغلاف الجوي, علينا إدراك وجود نوعين من الطاقة الإشعاعية وهما:
1- الطاقة الشمسية الإشعاعية والتي تشكل المصدر الأساسي لكل الطاقة الواصلة إلينا بمختلف أشكالها.
2- الطاقة الأرضية الإشعاعية بما فيها طاقة الغلاف الجوي الإشعاعية والتي هي أصلاً طاقة مستمدة من الطاقة الشمسية الإشعاعية بالإضافة إلى الطاقة التي تشعها الأجسام والأشياء إلى بعضها البعض, وعلينا أن ندرك أيضاً أن العمليات المتحكمة بالعلاقة بين أنواع الطاقة الإشعاعية كثيرة ومعقدة ومتشابكة, لذلك علينا أن نوجه اهتمامنا إلى تلك العمليات المؤدية إلى تشكل ظواهر الطقس والمناخ على سطح الأرض وطرق تصرفها, والقوانين الضابطة لها والتي تمكن من قياسها كمياً, وقبل كل شيء علينا توضيح بعضا لمفاهيم المتعلقة بهذا الموضوع.
الإشعاع:
يعرف الإشعاع بزنه "عملية نقل الطاقة بواسطة فوتونات الأمواج الكهرومغناطيسية دون الحاجة إلى وسيط أو تماس مع المصدر المشع", وهذه العملية التي تصلنا بواسطتها الطاقة الإشعاعية الشمسية, مع ذلك علينا أن نعلم أن سطع الأرض والغلاف الجوي وأجسامنا وكل الأشياء التي حولنا مهما كانت صغيرة أو كبيرة ومهما كان تركيبها الفيزيائي والكيميائي, ومهما كانت باردة تشع طاقة إشعاعية (Radiant Energy ) تتناسب طرداً مع درجة حرارتها شريطة أن لا تهبط درجة حرارتها إلى دون
-273.15 مئوية أما ما يعرف بالصفر المطلق, فكلما زادت درجة حرارتها عن هذه الدرجة كلما زادت طاقتها الإشعاعية.
هذه الحقيقة توصلنا إليها كل من العالمين جوزيف ستيفان(Josif Stefan, 1835-1893 م) ولودوبج بولتزمان (Ludwig Boltzman 1844-1906 م )في أواخر القرن التاسع عشر, وعرفت بقانون ستيفان بولتزمان نسبة لهما.

الاستشعار وامتصاص الطاقة الإشعاعية:
عندما تسقط أمواج الطاقة الإشعاعية الكهرومغناطيسية المنبعثة من الشمس على سطح الأرض وعلى غلافها الجوي وعلى كل الأشياء, تقوم هذه الأشياء يقوم هذه الأشياء بامتصاصها وتحميلها إلى طاقة داخليةInternal Energy)) (3ص 48-55), وخاصة طاقة حرارية تزيد من درجة حرارتها, فتعود وتشعها مرة أخرى على شكل أمواج كهرومغناطيسية إلى ما حولها.
إذن فإن الأشياء عندما تتعرض إلى الطاقة الشمسية الإشعاعية أو الطاقة الإشعاعية التي تشعها الأشياء من حولها وتمتصها فإنها تقوم بعملية (استشعاع) وعندما تقوم بإطلاقها فإنها تقوم بعملية (إشعاع), ويبدو واضحاً أنه كلما ازدادت قدرتها على الإستشعاع وكمية الطاقة الإشعاعية الممتصة كلما تسخنت الأشياء وازدادت قدرتها على الإشعاع, كما ويبدو واضحاً أيضاً أن الأشياء التي تمتص أو تستشع طاقة إشعاعية أكبر مما تشعه فإنها ستسخن, واذا شعت طاقة إشعاعية أكثر مما تستشع فإنها تبرد, وإذا كان مقدار ما تشعهمن طاقة إشعاعية مساوية لما تستشعه فإن درجة حرارتها تظل ثابتة وتكون هذه الأشياء في حالة توازن إشعاعي( Radiation Equilbrium), وهذا ما يفسر لنا الحالة الطبيعية الإشعاعية لكل الأشياء حولنا بما فيها الشمس, فقد لاحظنا فيما تقدم أنه عندما يشع سطح الشمس (الفوتوسفير) طاقة إشعاعية فإنه في الوقت نفسه يمتص طاقة حرارية تتولد في نواتها معادلة لم يشعه, ومن خلال خبراتنا اليومية نلاحظ أيضاً أن جميع الأجسام والأشياء حولنا تحافظ على توازنها الإشعاعي مع محيطها المتواجد فيه, وفي حالة اكتساب بعضها طاقة إشعاعية إضافية فإنها تسعى إلى إشعاعها والعودة إلى حالة توازنها الإشعاعي, والأمثلة على ذلك كثيرة لا حصر لها.
الطاقة وتحولاتها:
لابد لنا من الإشارة إلى أن الطاقة الإشعاعية الشمسية الساقطة على سطح الأرض تتعرض لتحولات عديدة من الطاقة مثل الطاقة الحرارية ( Heat Energy ), الطاقة الكامنة (Potential Energy ), الطاقة الحركية ( Energy Kinetie), الطاقة الكيميائية ( EnergyChemical ) لكن تظل الطاقة الحرارية أهمها وأكثرها حضوراً بالنسبة للعمليات المؤدية إلى تكوين طقس الأرض ومناخها, بالإضافة إلى أن أشكال الطاقة الأخرى تبقى ضئيلة نسبياً وستتحول بعملية أو أخرى إلى طاقة حرارية, وفي نهاية المطاف إلى طاقة إشعاعية تشعها الأشياء والأجسام التي تمتصها (8 ص 9-10 ) كما هو مبين في
ما يلي:
طاقة شمسية إشعاعية طاقة حرارية (محسوسة +كامنة) أشعة تحت الحمراء
حرارة كافيـة حرارة محسوسة أشعة تحت الحمراء
طاقة كامنة طاقة حركية طاقة حرارية أشعة تحت الحمراء
طاقة كيميائية طاقة حرارية أشعة تحت الحمراء
قوانين الإشعاع( Radiation Laws):
ولتفهم عمليات إشعاع الطاقة وامتصاصها (استسعاعها) وإبرازها بشكل كمي لا بد لنا من معرفة القوانين الضابطة والتي يمكن حسابها وتعرف هذه القوانين بـ( قوانين الإشعاع) ولتوضيح هذه القوانين وتسهيل استخدامها يجب الانطلاق من معيار مثالي تنطبق عليه هذه القوانين ومن تصميمها لذلك افترض العلماء وجود أجسام حرارية مثالية تمتص الطاقة الإشعاعية الساقطة عليها وتشعها في أقصى طاقة ممكنة وعرفت هذه الأجسام بالأجسام السوداء (Black bodies)وهي أجسام افتراضية تمتص أمواج الطاقة الإشعاعية الساقطة عليها كلها دون أن تعكسها أو تنفذها خلالها وتشعها في أقصى كمية عند أي درجة
حرارة لها وفي جميع الأطوال الموجبة ولا تدك تسميتها بالسوداء للدلالة على لونها وإنما للدلالة على أن أجسامها كتيمة للإشعاع (Opaque)وبتطبيق قوانين الإشعاع يمكن تحديد ميزات الأجسام السوداء وغيرها وكيفية تصرفها قوانين الإشعاع كثيرة لكنا سنحصر اهتمامنا بالقوانين الرئيسة والمهمة في دراسة الطقس والمناخ .
(1) وفقاً لقانون ستيفان بولتزمان تتناسب كمية الطاقة الإشعاعية(E) التي تشعها واحدة المساحة (1سم2) من سطح الجسم الأأسود طرداً مع القوة الرابعة لدرجة حرارتها الكلفاتنية (Tk4) خلال واحدة الزمن (1 دقيقة ) :
حريرة / سم2 د ك 4 E=σ Tk . e
هنا: σ = ثابت ستيفان بولتزمان 8.123 × 10 – 11 حريرة/سم2 د ك (5.667 × 10 -12 واط/سم2, د, ك4), Tk = درجة الحرارة الكلفانية وتساوي: درجة الحرارة المئوية +272.15, e= معامل الإشعاعية (Emissivity) ويساوي الواحد عند الأجسام السوداء, وتقل عن الواحد عند بقية الأجسام غير السوداء والمعروفة بالأجسام الرمادية (grebodies ) التي تشع طاقتها بشدة أقل من الأجسام السوداء وعند كل أطوال الأمواج وعند أي درجة.
ويبين الجدول التالي قيمة(e) لبعض المواد, وهي نسبة مئوية مما تشعه الأجسام السوداء
المادة
e
جلد الإنسان
98%
الماء الصافي
95%
الجليد
96%
الرمل الجاف
92%
الثلج
85%
الأسمنت
92%

عن: Hudson (1969)
2898

Tk

(2) وفقا لقانون وين للإزاحة (Wien Displacement Law) الذي اقترحه العالم ولهالم وين (1964-1928) , فان "للجسم الأسود طول موجة إشعاعية معينة يشع عندها طاقته الإشعاعية القصوى ويتناسب طول هذه الموجة عكسيا مع درجة حرارة الجسم " . فكلما ازدادت درجة حرارة الجسم كلما انزاح طول الموجة التي يطلق عندها طاقته القصوى نحو أطوال الأمواج القصيرة كما هو مبين في الشكل ، ويكتب قانون وين الشكل التالي :
مايكرو متر /ك Max = λ
حيث أن: Max λ = طول الموجة التي يطلق عندها الجسم الأسود أقصى طاقة إشعاعية له.
Tk = درجة الحرارة الكلفانية
(3) وفقاً لقانون وين الثاني (Weins Scond Law) ، " تتناسب شدة الطاقة الإشعاعية القصوى () التي تشعها واحدة المساحة (1سم2) من الجسم الأسود خلال واحدة الزمن (1 دقيقة ) طرداً مع القوة الخاصة لدرجة حرارتها الكلفانية (1ص37) أي :
حريرة /مايمرومتر دك CTk5= Emax
هنا فان C= ثابت وين ويعادل 1.8435×10-14 حريرة /سم2 د.ميكرو متر، ك(1.286×10-11 ) واط /م2 ، مايكرو متر ، ك .
E

a

(4) وفقا لقانون كيركهوف (Kirchhoffs Law)، فان ما تشعه الأجسام من طاقة إشعاعية (E) إلى ما تمصه منها (a) تتوقف على طول الاشعاع (λ) ودرجة حرارة الجسم (T) فقط :
,T)λ(F=

ويقتح قانون كيركهوف أيضاً " ان الأجسام جيدة الامتصاص لأمواج طاقة إشعاعية معينة فانها في الوقت نفسه جيدة في اشعاعها وبالمقابل فالأجسام رديئة الامتصاص لأمواج طاقة إشعاعية فانها ايضاً في إشعاعها وبالتالي يجب أن تكون إشعاعية الأجسام لأطوال أمواج (λE) معينة مساوياً لامتصاصيتها (λa) :
λ E = λa
لذلك فالأجسام التي تتصرف كأجسام سوداء تشع طاقة إشعاعية اكثر من غيرها من الأجسام لأنها تقوم بامتصاص الأمواج الإشعاعية الساقطة عليها كلها ، وتعود وتشعها في أقصى كمياتها تبعاً لدرجة حرارتها وطول الأمواج الإشعاعية .

الأجسام انتقائية الامتصاص (Selective Obsorbing Bodies):
مع أنه لا يوجد في الطبيعة أجسام سوداء كاملة فيمكننا ال حد كبير زن نعد الشمس وألارض وكثير من الاشياء حولنا خاصة تلك الكتيمة للأشعة كأنها أجسام سوداء تنتطبق عليها قوانين الاشعاع المذكورة .
لكن بالمقابل يوجد الكثير من الأجسام حولنا بما فيها الغلاف الجوي لا تتصرف كأجسام سوداء لأنها لا تمتص أمواج الطاقة الإشعاعية الساقطة عليها كلها وإنما تمتص بعضها وتنفذ عبرها بعضاً منها وتعكس بعضها الآخر لذلك تعرف هذه الأجسام بأنها انتقائيى الامتصاص ويعد الزجاج مثالاً نموذجياً لها إذ أنه يعكس جزءاً من الأمواج الإشعاعية الساقطة عليه ويمتص بعضاً من الأشعة تحت الحمراء والاشعة فوق البنفسجية وينفذ طيف الأشعة المرئية كله ، وكذلك تفعل صفائح البلاستيك الشفافة وكل الأجسام الصلبة الملساء الشافافة والماء والسوائل جميعها والأبخرة والغازات ويعد الثلج مثالاً مثيراً لهذه الأجسام فلونه الأبيض الناصع يدل على قدرته على عكس أمواج إقليم الاشعة المرئية البيضاء كلها وقد لوحظ أن تعرض المفرط للأشعة المرئية المنعكسة من سطح الثلج تؤدي ال ما يعرف بالعمى الثلجي (Snow Bindess) المؤقت لذلك تنحصر قدرة الثلج في امتصاص أمواج الأشعة تحت الحمراء فقط وبالتالي فإنه مشع جيد لها.
ومن وجهة النظر المناخية يعد الغلاف الجوي أهم هذه الأجسام حيث تقوم بعض غازاته مثل الاوكسجين (O2) والأوزون (O3) وثاني أوكسيد الكربون (Co2)وبخار الماء (H2o) وثاني اكسيد النتروز (N2o)وغيرها بدرو الماصات الانتقائية بكفاءة عالية لبعض الامواج الإشعاعية الشمسية والأرضية الشكل دون غيرها بينما في الوقت نفسه يسمح الغلاف الجوي بعبور أمواج طيف الأشعة المرئية وتهمل بعض عناصره الأخرى على عكس جزء كبير منها بعبور وذلك مما يؤثر عللا الطاقة الإشعاعية الشمسية الواصلة إلى سطح الأرض والأرضية وبالتالي على مجريات الطقس والمناخ وسنقوم فيما بعد بدراسة تأثير الغلاف الجوي في هذه الأمور بالتفصيل .
اذن يتضج لنا وفقاً لقانون كيركهوف إن هذه الأجسام قادرة على إشعاع أمواج الطاقة الإشعاعية التي امتصها ولا قدرة لها في اشعاع أمواج الطاقة الإشعاعية التي لم تمتصها بالإضافة إلى ذلك لا تشع أمواج الطاقة التي امتصها بكفاءة الأجسام السوداء (الجدول ) لذلك لا تعد هذه الأجسام أجساماً سوداء ولكن مع ذلك وخلال الاستخدامات العامة التي لاتقتضي دقة كبيرة يمكننا التعامل معها م حيث إشعاعها لأمواج الطاقة التي امتصتها عند درجة حرارتها كأنها أجسام سوداء إلى حد مقبول كما هو مبين في الجدول e:

الجدول : كعامل الإشعاعية لبعض الأجسام غير السوداء للأشعة
تحت الحمراء نسبة إلى ما تشعه الأجسام السوداء
الجسم
e
الجسم
e
جلد الإنسان
98%
الصحراء
90%-91%
الماء
95%
الأعشاب الطويلة
0.90
الثلج الجديد
82%-99.5%
الحقول والشجيرات
0.90
الجليد
0.96
الغابات المخروطية
0.90
الأسمنت
0.92
أوراق النباتات
0.90
الرمل الجاف
0.92
0.97-0.98

عن: Lockwood (1979) و Batton (1984)
ميزات الطاقة الإشعاعية الشمسية والأرضية:
باستخدام قوانين الإشعاع, يمكننا أن نحدد بعض الميزات الهامة لكل من الطاقة الإشعاعية الشمسية والأرضية, علماً بأن درجة حرارة سطح الشمس تعادل 5800 ك, ودرجة حرارة سطح الأرض تعادل 288 ك, فاستناداً لقانون وين للإزاحة:
2898

Tk

Max = λ

نلاحظ أن طول الأمواج الكهرومغناطيسية التي يشع عندها سطح الشمس معظم طاقته الإشعاعية تعادل 0.5 مايكرومتر (الشكل), لذلك فإنها تعرف بالطاقة الشمسية الإشعاعية قصيرة الأمواج (Solar Short Radiation), بينما تبلغ طول الأمواج الكهرومغناطيسية لبتي تشع عند سطح الأرض معظم طاقته الإشعاعية 10 مايكرومتر (الشكل), لذلك فإنها تعرف بالطاقة الأرضية الإشعاعية طويلة الأمواج (Terrestrial Longwave Radiation ).والحقيقة أن 99% من طيف أمواج الطاقة الإشعاعية الشمسية المحصورة بين 0.15-4 مايكرومتر, بينما يقع 99% من أمواج الطاقة الإشعاعية الأرضية بين 3-100 مايكرومتر, ضمن طيف الأشعة تحت الحمراء الطويلة الأمواج (8ب ص8, 5ص40,8ص24 ).
واستناداً إلى قانون وين الثاني:
Tk5×10-14×1.8435= Emax
تبلغ الطاقة القصوى التي يشعها 1سم2من سطح الشمس حوالي 121×10 3 لانجلي/د, بينما لا تزيد كمية الطاقة القصوى التي يشعها 1سم2 من سطح الأرض عن 0.03653 لانجلي/د. بذلك فإن ما تشعه واحدة المساحة من سطح الأرض عن طاقة إشعاعية قصوى أشد مما تشعه واحدة المساحة من سطح الأرض من طاقة إشعاعية قصوى أشد مما تشعه واحدة المساحة من سطح الأرض من طاقة إشعاعية قصوى بحوالي 3.313×10 3 مرة.
ووفقاً لقانون ستيفان بولتزمان:
Tk4× 10×E= 80123
فإن مجموع ما يشعه 1سم2 من سطح الأرض, الذي يشع 0.56 لانجلي/د.
وأخيراً,لا بد من ملاحظة أن الطاقة الإشعاعية الشمسية تصدر من سطح الشمس منطلقة عبر الفضاء داخلة إلى سطح الأرض عبر الغلاف الجوي ، لذلك عادة ما تعرف بـ ( الاشعة الشمسية الداحلة Income Solar Radiation) وبما أن سطح الأرض والاجسام التي عليه تتعرض لهذه الأشعة وتمتصها أي تستشعها أو بكلمة أخرى تتشمش بها لذلك تعرض هذه الأشعة الشمسية الداخلة بالتشمس (Insolation) أيضا وهذه التسمية مشتقة من عبارة (Income Solar Radiation) واختصارا لها وفيما يلي من هذه الطاقة الإشعاعية الأرضية تنطلق من سطحها عابرة غلافها الجوي إلى الفضاء الخارجي لذلك تعرف بالأشعة الأرضية الخارجة (Outgoing Trrestrial Radiation) أو العائدة (Terrestrial Back Radiation ) .
تأثيرات الغلاف الجوي كجسم انتقائي الامتصاص للطاقة الإشعاعية :
من وجهة النظر المناخية يعد الغلاف الجوي أهم الأجسام انتقائية الامتصاص للطاقة الإشعاعية الشمسية و الأرضية إذ تقوم بعض غازاته كما هو مبين في الشكل / / بدور الماصات الانتقائية بكفاءة عالية ففي طبقات الجو العالية ( حوالي 90كم) تقوم جويئات الاكسجين (O2) بامتصاص الأشعة فوق البنفسجية المتطرفة و البعيدة التي تتراوح أطوال أمواجها بين 10 – 100 نم وتقوم جزيئات الأوكسجين (O3) عند ارتفاع يتراوح بين 10 – 55 كم بامتصاص زمواج الأشعة فوق البنفسجية البعيدة والقريبة المحصورة بين 200 – 320نم وبعض أمواج الأشعة تحت الحمراء يناهز طولها 960نم .
وعند الاتفاعات التي تقل عن 10كم تقوم جزيئات بخار الماء (H2O) بامتصاص معظم أمواج إقليم الأشعة تحت الحمراء الأرضية بين 000 1 – 000 8 والتي تزيد عن 000 12 نم أيضاً كما تقوم جزيئات ثاني أوكسيد الكربون (Co2) بامتصاص أمواج هذه الأشعة عند 000 4 نم وبين 000 13 – 000 17 نم وتقوم جزيئات الميثان (CH4) بامتصاص عند 2500نم و 7000نم جزيئات النتروز (NO2) عند 400 نم و 7000 نم لذلك يمكننا أن ندع هذه الغازات بـ " الغازات الحرارية " ولا تستطيع هذه الغازات امتصاص أمواج الأشعة الأرضية تحت الحمراء المحصورة بين 8000-14000 نم والى حد ما بين 4000-6000نم وبين 17000-21000 نم ( الشكل ) فتنطلق هذه الأمواج عابرة الغلاف الجوي إلى الفضاء الخارجي لذلك فإنها تدعى نوافذ الغلاف الجوي (Atmospheric Windows) .
عندما تمتص الغازات الحرارية وعلى رأسها Co2 وبخار الماء (H2O) الأشعة الأرضية تحت الحمراء وتمتصها من الانطلاق إلى الفضاء الخارجي تزداد حرارتها وتزداد طاقتها الحركية وتصادماتها العشوائية مع بعضها البعض ومع ما يحيط بها من جزيئات غازية, مولدة طاقة حرارية إضافية (طاقة حرارية ذاتية), ونتيجة لذلك تتسخن الأجزاء السفلى نم الغلاف الجوي, وتشع طاقة إشعاعية تحت حمراء إلى سطح الأرض متسخنة, وتتالى هذه العملية الإشعاعية,وبذلك تشكل الغازات الحرارية طبقة عازلة حول الأرض تمنع جزءاً من أمواج الأشعة الأرضية تحت الحمراء من الانطلاق إلى الفضاء, وبذلك فإنها تشكل ما يعرف بظاهرة "الإنحباس الحراري". ولقد بينت الدراسات أنه لولا وجود Co2 وبخار الماء (H2O ) لكان متوسط درجة حرارة سطح الكرة الأرضية حوالي -20 مئوية أو أقل بحوالي 35 مئوية عما هي عليه حالياً(3ص 59 ,35ص121).
تدعى عملية امتصاص الغازات الحرارية لأمواج الأشعة الأرضية تحت الحمراء عملية "تأثير الغلاف الجوي Atmospherc Effect". لكنها في الماضي كانت تدعى " تأثير البيوت الخضراء Greenhouses Effect ", حيث كان يعتقد أن تسخين الهواء في البيوت الخضراء الزجاجية أو البلاستيكية المستخدمة في الزراعة يعود إلى سماح ألواح زجاجية أو البلاستيكية لأمواج الأشعة الشهية المرئية البيضاء بعبورها, لكنها في الوقت نفسه تمنع
أمواج الأشعة الأرضية تحت الحمراء من مغادرة البيوت الخضراء. لكن تبين فيما بعد أن ذلك غير صحيح وأن تسخن هواء البيوت الخضراء يعود إلى ركوده وعدم امتزاجه مع الهواء البارد خارجها (3ص59,35ص121).
كما تقوم الغيوم المنخفضة بامتصاص معظم أمواج الأشعة الأرضية تحت الحمراء بما فيها المحصورة بين 8000-14000 نم, وتعود وتشعها مرة أخرى باتجاه سطح الأرض فيمتصها ويتسخن بها ثم يعود ويشعها مرة أخرى إلى الغيوم وهكذا, لكن في الوقت نفسه فإن الغيوم سيئة الامتصاص لأمواج الأشعة الشمسية المرئية البيضاء لذلك فإننا نلاحظ ارتفاع درجة الحرارة في أيام الشتاء ولياليها المقيمة وانخفاضها في الأيام الصحوة ولياليها, ويقدر مجموع ما تمتصه الغيوم وجزيئات الهواء من التشمس الواصل إلى قمة الغلاف الجوي بحوالي 19%, بالإضافة إلى ذلك, تقوم الغيوم بعكس حوالي 20% من التشمس الواصل إلى قمة الغلاف الجوي, كما تعكس جزيئات الهواء حوالي6%منه, بينما لا يعكس سطح الأرض سوى 4% منه وسطياً مهملاً, وتظل متوازية, ويكون انحناء جبهتها عند سطح الكرة الإشعاعية التي تقع عندها الأرض مهملاً أيضاً وتشكل سطحاً مستوياً تتعامد معه الأشعة الشمسية المكونة لهذه الحزمة.

الأشعة الشمسية المتوازية:
تنطلق الأشعة الشمسية من سطح الشمسية متجانسة ومتماثلة في جميع الاتجاهات مشكلة كرة إشعاعية مركزها الشمس تزداد اتساعاً مع الابتعاد عنها في الفضاء الكوني, لكن مع ذلك ينظر للأشعة الشمسية الواصلة إلى سطح الأرض على أنها أشعة متوازنة, لأنه بسبب صغر المسافة بين الأرض والشمس من جهة,وبسبب ضآلة طول قطر الأرض من جهة أخرى, يظل إنفراج الأشعة الشمسية المشكلة للخدمة الإشعاعية الساقطة على سطح الأرض.
التشميس الواصل إلى الأرض :
تطلق الشمس كميات هائلة من الطاقة الإشعاعية الكهرومغناطيسية وكما لاحظنا فان ما يشعه1سم2 من سطح الشمس على شكل كرة إشعاعية متزايدة الاتساع تتناقص شدتها ولا يصل إلى الأرض سوى النذر اليسير وذلك لأن شدة الطاقة الإشعاعية الشمسية تتناسب عكساً مع مربع المسافة التي تقطعها الأمواج الشعاعية في الفضاء :
1

d2

I

1

d2

I=k

هنا : 1= مقدار أو شدة الطاقة الإشعاعية الواصلة
D= المسافة بين الجسم المشع ( الشمس ) والجسم المستشع (الأرض)
K= ثابت
واستنادا لذلك فعند وصول الطاقة الإشعاعية الشمسية إلى المدى الذي تقع عنده الأرض (سطح الكرة الإشعاعية التي تقع عندها الأرض ) تصبح شدتها أقل من 2لانجلي /د (2حريرة/سم2د) وقد رأينا فيما تقدم أنه بامكاننا تسمية الطاقة الشمسية الإشعاعية الداخلة إلى سطح الأرض (Income Solar Radiation) بالتشمس (Insolation) ومع وجود الغلاف الجوي للأرض تميل دراسات عديدة إلى تسمية التشمس الواصل إلى قمة الغلاف الجوي " الطاقة الإشعاعية فوق الأرضية (Extra Terrestrial Radiation) لتمييزه عن التشمس الواصل إلى سطح الأرض .
ويمكن حساب مقدار الطاقة الشمسية الإشعاعية أو التشمس الواصل إلى واحدة المساحة من سطح يقع عند قمة الغلاف الجوي يتعامد مع الاشعى الشمسية خلال دقيقة واحدة من الزمن بمعرفة الطاقة الإشعاعية التي يشعها سطح الشمس وقسمتها على مساحة الكرة الأرضية الاشعاية التي شكلها الأشعة الشمسية والتي تقع عند سطحها الأرض :
10-11(4πr2)× T4 σ

4π d2

Io =

هنا : Io= مقدار التشمس الواصل
σ = ثابت ستيفان (10-11 × 8.132 حريرة /دك4)
T = درجة حرارة الشمس ك (5800) درجة
rs = نصف قطر الشمس (710 × 6955 سم )
107)2×6955)×3.14×(5800)4× 10-11×8.132

10-11)×(149.6 × 3.14 × 4

d = البعد بين الارض والشمس أو نصف قطر الكرة الإشعاعية التي تقع الأرض عند سطحها (1110 × 149.6 سم ) = 3.14 وبالتعويض بالمعادلة :
حريرة/سم2د(لانجلي/د)1.989=

ومن هذه المعادلة يمكن حساب قيمة الثابت (k) في المعادلة إذ يساوي 4.4504×2610 لانجلي/د.
ويهتم المناخيون والرصاد الجويون والعاملون في مجال الطاقة الشمسية بقياس هذا المقدار من الطاقة الشمسية الإشعاعية (التشميس) الواصل إلى سطح الأرض وحسابه بدقة لأنه يشكل الأساس لحسابات الطاقة الشمسية والقوانين الناظمة لها ويعد معياراً لها وقد اتفق عامليا على تسميته بـ "الثابت الشمسي Solar Constant" .
قامت دراسات عديدة بقياس الثابت الشمسي وحسابه وكان ابوت ورفقاه (Abbteto) في مؤسسة سميتسونيان (Smithsonuoi Intitution) أول من أجرى قياس له من فوق (Johnsos) إلى 1.9997 لانجلي /د (1395 واط /م2)(30) .
وفي قياسات مباشرة وأكثر دقة استخدمت فيها الطائرات والبالونات والأقمار الاصطناعية المحملة بأجهزة قياس متطورة أجريت فوق الغلاف الجوي للأرض تبين أن قمة الثابت الشمسي تعادل 1.94 ± 1.5%لانجلي/د (1353 ± 1.5% واط/م2)وقد تبنت عام 1971 كل من وكالة ±ناسا (NASA ) واللجنة الأمريكية لفحص المواد(American Society for Testing Materials )هذه القيمة (25 ,32 , 33) ومازلت متبناة من معظم الباحثين في العالم, مع ذلك, أعاد العالم فروهليش (Frohlich )عام 1977 فحص لقياسات التي استخدمت في تحديد هذه القيمة للثابت الشمسي وتحليلها, وأدخل في تحليله قياسات أجبرت بواسطة القمرين الاصطناعيين نيمبوس ( Nimbus) ومارينر (Marinar)ونتيجة لذلك اقترح أن تكون قيمة الثابت الشمسي 1.968± 1.5 (1373 ±1.5 واط/م2) (34,25).واستناداً إلى ما تقدم يمكن أن نعرف الثابت الشمسي بأنه "مقدار الطاقة الشمسية الإشعاعية (التشمس) الواصل إلى واحدة المساحة (1سم2) من سطح يتعامد مع الأشعة الشمسية, يقع عند قمة الغلاف الجوي, أو عند سطح الأرض بافتراض عدم وجود الغلاف الجوي, خلال واحدة الزمن (1 دقيقة) عند البعد الوسطي بين الأرض والشمس (149.6 ×10 6 كم) ويعادل 1.94 لانجلي/د (حريرة/سم2د)أو 1353 واط/م2.
1.49× r2 π

4π r2

وباستخدام الثابت الشمسي, يمكننا حساب كمية التشمس (الطاقة الشمسية الإشعاعية) الكلية, الواصلة إلى قمة الغلاف الجوي باعتبار أن مقطع سطح الأرض المعرض للأشعة الشمسية بشكل دائرة, ويتقسم مقدار التشمس الواصل إلى هذه الدائرة على مساحة سطح الكرة الأرضية نحصل على متوسط ما تتلقاه أو ما تستشعه واحدة المساحة (1سم2) من سطح الأرض خلال واحدة الزمن (1د), وذلك كما يلي:
I = = 0.485

هنا : r = نصف قطر الأرض
r2 π= مساحة مقطع الأرض المعرض للتشمس
4π r2 = مساحة الكرة الأرضية
اعتقدت بعض الدراسات فيما مضى أن قيمة الثابت الشمسي تتعرض لتغيرات دورية تتراوح بين ± 0.5 – 2% تتبع نشاط البقع الشمسية ودورتها كل 11 سنة ، فمن هذه الدراسات ما اقترح وجود علاقة عكسية بين مقدار الثابت الشمسي وعدد البقع الشمسية ، إذ انه يزداد مع قلتها ويتناقص مع ازدياد عددها ، وبعضها الأخر اقترح عكس ذلك وقال بوجود علاقة طردية بينهما ، إذ انه يزداد مع ازدياد عددها . ولكن بينت الدراسات اللاحقة فيما بعد عدم وجود أي علاقة بين المقدار الثابت الشمسي ودورة البقع الشمسية (8ص25) .
وبسبب قوة حقولها المغناطيسية ، وما يصاحبها من كميات كبيرة من الأشعة فوق البنفسجية ( ) ينحصر تأثير البقع الشمسية في الأشعة فوق البنفسجية المتطرفة (EUV) التي تقع أطوالها عن 0.2مايكرو متر ، وهذه لا تحمل طاقة حرارية ، وبذلك فان أكثر 99% من أمواج الطاقة الشمسية الإشعاعية يقع بين 0.2-1000 مايكرو متر ولا تتأثر بالبقع الشمسية (9ص38).وبذلك يمكن اعتبار الطاقة الشمسية الإشعاعية ثابتة المقدار (25ص7) .
وختمت منظمة الأرصاد الجوية العالمية (MWO) هذا الموضوع بإعلانها " بأن للبقع الشمسية دورات منتظمة تقريباً تحصل كل 11-22 سنة ، ولكن لا يوجد دليل حاسم على أن لهذه البقع الشمسية ودورانها تأثير في مقدار الطاقة الشمسية الإشعاعية الواصلة إلى الأرض (أرصاد) . بالإضافة إلى ذلك تجدر ملاحظة أن التغيرات المقترحة في مقدار الثابت الشمسي ( ± 1 – 2%) لا تتجاوز مقدار الأخطاء المحتملة في عمليات القياس لذلك وفي ضوء ما تركته الدراسات الأخيرة يمكننا اعتبار قيمة الثابت الشمسي ثابتاً إلى أن تظهر قياسات موثوقة في المستقبل تقترح خلاف ذلك : 80:


شكرا جزيلا لك فانا احتاج هذا البحث كثيرا تعليم_الجزائر:d

شكرا لك جزيلا لك تعليم_الجزائر


شكرا لك جزيلا لك تعليم_الجزائر

عفواااااااااااااااا
وان شاء الله اكون اكون قد افدتكم

التصنيفات
العلوم الطبيعية والحياة السنة الثالثة متوسط

الطاقة الشمسية و طاقة الرياح

تعليم_الجزائر[/IMG][/IMG]

عرض بوربونت الطاقة الشمسية و طاقة الرياح
رابط التحميل:
http://www.4shared.com/office/pDzZcXpdba/_____1_.html


التصنيفات
العلوم الطبيعية والحياة السنة الثالثة متوسط

بحث حول الطاقة الشمسية

الطاقة الشمسية الإشعاعية الحرارية ( التشميس )
أهمية الطاقة الشمسية الإشعاعية الحرارية :
لا يخفى على أحد ما للطاقة الشمسية الإشعاعية من أهمية عظيمة مباشرة وغير مباشرة في مختلف العمليات الحيوية والفيزيائية المولدة لكافة أنواع الحياة على سطح الأرض والعمليات التي تحافظ على استمرارها. ولولاها لتجمد سطح الأرض وانعدمت الحياة عليه وأصبح كوكباً بارداًَ ميتاً.
ولا شك في أن من أهم هذه العمليات تلك التي تحول هذه الطاقة إلى منتجات بيولوجية مفيدة متمثلة في المحاصيل الغذائية والوقود. فسلاسل الغذاء، مهما كانت طويلة ومعقدة تعود في جذورها إلى امتصاص خلايا النبات الخضراء الطاقة الشمسية الإشعاعية واستخدامها في بناء أنسجتها خلال عملية التمثيل الضوئي، وما الوقود المستحاث ( الأحفوري ) من فحم وبترول، وحطب إلا طاقة شمسية إشعاعية مخزونة تتحرر خلال عمليات الاحتراق.
أما من وجهة النظر المناخية، فالطاقة الشمسية الإشعاعية هي المولد الرئيسي لعناصر الطقس والمناخ كافة فلولاها ما تسخن سطح الأرض ولا الهواء، ولتوقف تدفق الرياح وتبخر المياه وهطول الأمطار، وتوقف جريان المياه في الأنهار. إنها القوة المحركة لنظام دورة الغلاف الجوي ومياه البحار والمحيطات، وبالتالي فإنها المحرك لعمليات نقل بخار الماء والطاقة الحرارية وتبادلها بين المناطق والأقاليم على سطح الأرض. ولذلك فإنها بما يعتريها من تحولات وتباينات مكانية وزمنية تعمل بشكل مباشر على تكوين حالات الطقس والمناخ المتنوعة على سطح الأرض.
تعد الشمس بحق المصدر الوحيد للطاقة الحرارية الواصلة إلى سطح الأرض. ولا شك في أن النجوم والقمر والكواكب الأخرى تطلق طاقة حرارية إشعاعية, وكذلك تفعل الأرض, إذ تنطلق طاقة حرارية من باطنها تعرف بالحرارة الأرضية ( geothermal )، ولكن أشكال هذه الطاقة جميعها ضئيلة جداً ومهملة تماماً إذا ما وازنّاها بما يصل سطح الأرض من طاقة شمسية إشعاعية. ويعود ذلك أولاً إلى البعد الشاسع الفاصل بين الأرض والنجوم الأخرى التي نراها تسطع في السماء, إذ يقع أقرب نجم إلى الأرض بعد الشمس، ذلك المعروف بمجموعة ( اُلفاسينتاري alpha centori ) المكونة من ثلاثة نجوم تدور حول بعضها البعض, على بعد يناهز 3,4 سنة ضوئية منها (1), أي ما يعادل 40.7×1210 كم, وهذا ما يزيد عن 260.000 ضعف المسافة بين الأرض والشمس, ويقل التدفق الحراري الأرضي عن 10-5 من الطاقة الشمسية الواصلة إلى سطح الأرض، ويقل ما يشعه القمر عندما يكون بدراً كثيراً عن ذلك.

الشمس :
أوردت العديد من الدراسات ( 2، 3، 4، 5، 6، 7، 8 ، 9 ) معلومات مستفيضة حول بنية الشمس وتركيبها، استقتها من قياسات ومشاهدات قامت بها التوابع الاصطناعية مثل " سكاي لاب " ( مخبر السماءsky lab ) و( نمبوس nimbus7 ) و(هابيل ( habelوغيرها من التوابع والدراسات التي قامت بها وكالة الفضاء الوطنية الأمريكية (Nasa ) حول الشمس. وبينت, أن الشمس نجم متوسط الحجم, مكون من كرة هائلة ملتهبة تبلغ درجة حرارة سطحها حوالي 6000 ْ مئوية ( 6300ه كالفانية) ويبلغ طول قرص قطرها المرئي 1391×310 كم , أي ما يعادل 110 ضعف طول قطر الأرض تقريباً، وتزيد كتلتها عن 1998×2410 طن, أي ما يعادل 333×310 كتلة الأرض البالغة 6×2110 طن.
تتمركز الشمس في وسط المجموعة الشمسية، وتبعد عن الأرض بحوالي 149.6×610 كم وسطياَ (1) أو ما يعادل واحدة فلكية "Astronomical Unit "(25ص 3 ). ويظهر قرصها المرئي من سطح الأرض محصوراً في زاوية صغيرة جداً تتراوح بين30 َ – 32 َ. وتدور حول محورها دورة واحدة كل أربع أسابيع تقريباً، لكنها لا تدور كما تدور الأجسام الصلبة إذ تتفاوت دورتها حول محورها بين 27 يوم عند خط استوائها و30 يوم عند قطبيها.
بنية الشمس:
بينت الدراسات، استناداً إلى التباينات في الكثافة والضغط ودرجة الحرارة السائدة خلال الشمس، إن الشمس تتكون من عدة طبقات متميزة عن بعضها البعض، كما هو موضح في الشكل ( 1 ) ، وهي:
1ـ النواة ( core ):
يقدر طول نصف قطر نواة الشمس بحوالي 23%-28.8% (159.95 ×310-200×310 كم ) من نصف قطرها الكلي وتحتوي على ما يزيد عن40% من كتلتها و15% من حجمها، وتزيد كثافتها عن 10ه-1.35×10ه كغ/ م ،ويتولد خلالها ما يزيد عن 90% من الطاقة الشمسية الحرارية الناتجة عن التفاعلات الذرية التي تندمج خلالها ذرات الهدرجين ( H ) متحولة إلى هليوم ( He ) وطاقة. ويعتقد أن معظم الأشعة فيها مكوناً من الأشعة السينية ( X ) ومن أشعة غاما ( γ ) ، وتقدر درجة حرارتها في مركزها بين 15×610-20×610 درجة كالفانية، وبنحو 7×610-8×610 درجة كلفانية عند أطرافها، ويقدر الضغط فيها بين610- 22 ×610 بار.
2 ـ الغلاف الإشعاعي (Radiative Zone):
تحتل سماكة هذا الغلاف حوالي47% ( 326.9 ×310 كم ) من نصف قطر الشمس. وتقل الكثافة خلاله تدريجياً حتى تبلغ عند أطرافه حوالي 70-120كغ/ م3. وتصل درجة حرارته إلى حوالي 610 درجة كالفانية. وخلاله تشع الطاقة الشمسية نحو سطح الأرض.

3 ـ الغلاف الحملاني (Convective Zone):
تشغل سماكة هذا الغلاف حوالي 30% (208.7 ×310 كم ) من نصف قطر الشمس وتتناقص كثافته إلى حوالي 10-4كغ/ م3 ويصل الضغط فيه إلى أقل من 10-2 بار عند حده الخارجي، تسود خلاله تيارات حملا نية حرارية تنقل الطاقة الشمسية إلى سطح الشمس.

4 ـ الغلاف المرئي "فوتوسفير" (Photosphere ):
يشكل غلاف فوتوسفير الحد الخارجي للغلاف الحملاني، وفي الوقت نفسه يشكل سطح الشمس المرئي ذو اللون الفضي اللامع. ويعرف أحياناً بالغلاف الضوئي (lightSphere of)، وتبلغ سماكته عدةكيلو مترات، وهو المصدر الرئيسي للطاقة الشمسية الإشعاعية الواصلة إلى سطح الأرض, وتناهز درجة حرارته 6000 ْ كالفانية وتقل كثافته عند الحد الخارجي عن 10 كغ/ م3.
يظهر الفتوسفير مبرغلاًً ، تغطية خلايا حرارية حبيبية لامعة (Granules) غير منتظمة تمثل قمم التيارات والفورانات الحملانية الجارية خلال الغلاف الحملاني، تتراوح أقطارها بين 1000-3000 كم، ولا تزيد مدة بقاء كل منها عن بضع دقائق. وعلى الرغم من تشكل الفوتوسفير من غازات ضئيلة الكثافة فإن حده الخارجي محدد بوضوح، فالغازات المكونة له شديد التأين تمكنه من التصرف كجسم كتيم للأشعة قادر على امتصاص وإطلاق الأشعة الشمسية باستمرار.
وتعد البقع الشمسية (Sunspots ) من المظاهر الهامة التي تعتري سطح الفوتوسفير، وتعرف أيضاً بالكلف الشمسي وتعرف أحياناً بالمسامات (Pores ). وهي بقع داكنة اللون نسبياً، لانخفاض درجة حرارتها عما حولها بحوالي 1000 ه -1500 ه مئوية، إذ تقدر درجة حرارتها بين4000 ْ- 4500 ْ كالفانية. ولا تتعدى مساحتها مساحة الخلايا الحملانية، لكن تتراوح أطوال أقطار الكبيرة منها بين 410- 510 كم ، ويمكن مشاهدتها عند الغروب بالعين المجردة. ويحيط بالبقع الشمسية خلايا حرارية (Faculae ) لها نفس أبعادها لكنها أشد حرارة منها ولمعاناً ويشتد خلالها الإشعاع الشمسي ويتعاظم ليعوض النقص في الإشعاع الحاصل عند تكاثر البقع الشمسية.
تدوم البقع الشمسية عدة أيام، وتختلف أعدادها وفقاً لدورات زمنية منتظمة تتكرر كل 11 سنة وسطياً وبعضها يصل إلى 22 و89 وحتى 178 سنة. تتميز البقع الشمسية بقوة حقولها المغناطيسية, وبكونها مراكز للأقاليم المضطربة والناشطة على سطح الشمس. وتؤدي حتماً إلى اضطراب في الغلاف المغناطيسي الأرضي.

5 ـ (Reversing Layer ):
تمثل هذه الطبقة الطبقة الأولى من الغلاف الجوي الشمسي, تتكون من غازات شفافة, تبلغ سماكتها حوالي 560 كم فوق الفوتوسفير, وتقل درجة حرارتها إلى حوالي 4200 ْ كالفانية، ولا تلاحظ إلا في أوقات كسوف الشمس الكلي أو باستخدام أدوات تحجب قرص الشمس.
يلاحظ خلال الطبقة الانقلابية خطوط غامقة اللون, تعرف بخطوط فرون هوفر ( Fraunhofer Lines) نسبة للعالم الألماني جوزيف فرون هوفر الذي اكتشفها.وتشكل هذه الطبقة نطاقاً انتقالياً بين الفوتوسفير وغلاف كروموسفير التالي.
6 ـ طبقة كروموسفير( Chromosphere):
تظهر طبقة كروموسفير فوق الطبقة الانقلابية على شكل هالة تحيط بالشمس تعرف أحياناً بالطبقة الملونة (Colorsphere ) تناهز سماكتها 1000 كم, متكونة من غازات ضئيلة الكثافة من شوارد الهدرجين والكالسيوم (Ca ), وتتزايد درجة حرارتها تدريجياً باتجاه الخارج من 5000 ْ كالفانية عند قاعدتها إلى حوالي 20.000 ْ كالفانية عند قمتها. وتمثل كروموسفير الطبقة الثانية من الغلاف الجوي الشمسي. ولا يمكن مشاهدتها إلا في أوقات الخسوف الشمسي فقط.
وبين الوقت والآخر تثور خلال كروموسفير فورانات أو إندلاعات شمسية ( Flares) تصل ارتفاعها آلاف الكيلومترات. و عادة يزيد عددها عن 100 إندلاع يومياً، تتخللها عدة إندلاعات عظيمة (Prominences ) تحدث سنوياً. تعد هذه الإندلاعات مصدراً لتدفقات شديدة من الأشعة فوق البنفسجية والأشعة السينية ومختلف أطياف الأشعة، يصاحبها فيض عظيم من البلازما الشمسية المشحونة بطاقة كهربائية كبيرة، ويذكر أنه في يوم 12 أيار / مايو من عام 1980 حدث اندلاع عظيم دام حوالي 40 دقيقة غطى مساحة تقدر بنحو 2.5×10 9 كم2 من سطح الشمس (7).
7 ـ طبقة كورونا ( Corona):
تقع الكرونا فوق طبقة الكروموسفير, مشكلة الطبقة الخارجية للغلاف الجوي الشمسي. ولا يمكن مشاهدتها أيضاً إلا في أوقات كسوف الشمس الكامل. وتتكون من البلازما الشمسية أو ما يعرف بالرياح الشمسية (Solar Wind ). وهي أقل كثافة من الكروموسفير, تتألف من 91.3% بروتونات و8.7% ذرات هيليوم متأنية تصاحبها إلكترونات وأنواع مختلفة من الأشعة الشمسية. تتراوح درجة حرارتها بين 10 6-2×10 6 درجة كلفانية (7), تنطلق الرياح الشمسية بسرعة هائلة تزيد عن 500 كم/ثا, وتزيد عن ذلك في أوقات الإندلاعات الشمسية الحاصلة من طبقة كروموسفير. تنتشر الكرونا خلال مساحات شاسعة في الفضاء الكوني متعدية حدود المجموعة الشمسية. ويعرف الحد الذي تصل إليه بالحد الشمسي.
والحقيقة فإن الأرض تقع في الأجزاء الخارجية من الغلاف الجوي الشمسي, ولذلك يدخل الغلاف المغناطيسي الأرضي في صراع دائم مع الرياح الشمسية التي تضغط عليه باستمرار لكنه يتمكن من صدها ومنعها من الوصول إلى سطح الأرض.

تولد الطاقة الشمسية:
تشبه الشمس بفرن ذري عظيم, تتحول في نواتها ذرات الهيدرجين ( H11) بواسطة الاندماج الذري إلى ذرات هيليوم ( 24He) مطلق طاقة حرارية هائلة ( E ) ونترونات (n01) وبزوترونات ( +e )وغيرها من الجسيمات الناتجة عن تفكك ذرات الهيدرجين واندماجها.
يبدء الاندماج الذري باندماج نويات(11H) منتجة نظائر الهيدروجين ديوتيريوم (12H)وتريتوريوم (31H)وتحولها إلى ذرات هليوم.

11H + 11H 21H + e
21H + 21H 31H + 11H
21H + 21H 32He + 10n + E
21H + 31H 42He + 10n + E
وتتولى الاندماجات الذرية متزامنة مع بعضها البعض وتستمر، باستمرارها يستمر تدفق الطاقة الشمسية الحرارية الهائلة . ويتم إنتاج الطاقة وفقاً للنظرية النسبية لاينشتاين (ص10) E=mc2 erg
هنا : ـ E= الطاقة الحرارية المتدفقة ( ايرج أو حريرة)
ـ m= كتلة الذرات المندمجة
ـ c= سرعة الضوء (300× 10 8 سم /ثا)
لذلك فإن ما ينتح اندماج ذرات غرام واحد من الهدرجين يساوي 9×10 :إيداج, أي ما يعادل 21.5×10 12 حريرة /ثا.
واستناداً إلى تقديرات العالم جاموGamo (20) فإن حوالي 800×10 6 طن من الهيدرجين تتحول في نواة الشمس من طاقة حرارية بحوالي 17.2×10 24 إيداج/ثا أي حوالي 17.2×10 27 حريرة/ثا. ويمكن أن نتصور مقدار هذه الطاقة الحرارية الهائلة المنبعثة من إن إندماج ذرات هذه الكتلة الهدروجينية إذا علمنا أن الإندماج الذري لكيلو غرام واحد منها ينتج طاقة تعادل ما ينتجه احتراق 20×10 6 كغ من الفحم الحجري.

(1)ايرج (erg): واحدة لقياس الطاقة الحرارية والعمل في واحدة (cgs), وكل
1 حريرة =4.187×10 7 ايرج وكل 1 جول أو1 واط = 10 7 ايرج
ٍطيف الأشعة الشمسية وطبيعتها:
تشع الشمس طاقتها الإشعاعية على شكل طيف واسع من أمواج مشحونة كهربائياً ومغناطيسياً, تعرف بالأمواج الإشعاعية الكهرومغناطيسية (Electromognatic radiation waves )، ذات أطول مختلفة
وترددات متعددة, تنطلق بسرعة كبيرة واحدة قاطعة مسافة واحدة خلال واحدة زمن(1 ثانية) تعادل 300×10 3 كم/ثا, وهذا ما يعادل سرعة الضوء في الثانية الواحدة. ولا تتأثر سرعة انتشارها بوجود الغلاف الجوي للأرض لأنه بالنسبة لها رقيق جداً إلى حد يمكن اعتبارها وكأنها تنتشر في فضاء مفرغ من الهواء. وعادة ما تصنف الموجات الإشعاعية الكهرومغناطيسية بطول أمواجها وترددها خلال مسافة زمنية محددة ( 300×10 3 كم/ثا ) .
يقصد بطول الموجة المسافة الفاصلة بين قمتي أو قعري موجتين إشعاعيتين متتاليين (الشكل ). وتستخدم الوحدات المترية وأجوائها في قياسها، فتقاس الطويلة منها بواحدة المتر (م) بينما تقاس القصيرة منها بواحدة (المايكرومترUM)مكم ويساوي 10-6 م أو النانومتر(nm)ويساوي 10-9 م أو الانجستروم انج ويساوي 10-10م
ويعني تردد الأمواج الإشعاعية الكهرومغناطيسية عدد هذه الأمواج التي تعبر حداً معيناً خلال ثانية من الزمن أو بكلمة أخرى يعبر عن عدد الأمواج الإشعاعية الحاصلة خلال المسافة التي تقتطعها هذه الأمواج خلال واحدة الزمن ( ثانية واحدة ). ويمكن التعبير عن هذه المسافة "بالمسافة الزمنية" ولأن هذه الأمواج تنطلق بسرعة واحدة, هي سرعة الضوء قاطع مسافة 300×10 3 كم بالثانية الواحدة, فيعنر عن هذه المسافة الزمنية "بالثانية الضوئية",وهي أصغر وحدة في ما يعرف بوحدات المسافة الضوئية, إذاً فالثانية الضوئية ومضاعفاتها ( دقيقة, ساعة, يوم, سنة ضوئية ) ليست واحدات لقياس الزمن, بل هي واحدات لقياس المسافات, تستخدم في قياس المسافات الشاسعة في الفضاء بين الاجرام السماوية, كما هو الحال في استخدام الوحدة الفلكية المذكورة سابقاً .
تظهر الأمواج الطويلة خلال المسافة الزمنية (ثانية ضوئية) التي تقطعها أقل تردداً من الأمواج القصيرة, وهكذا فكلما كبرت أطوال الأمواج قل ترددها وكلما قصرت ازداد ترددها. إذن توجد علاقة عكسية بين أطوال الأمواج وترددها، ويمكن حساب تردد الأمواج الإشعاعية الكهرومغناطيسية بالعلاقة التالية:

(1)حيث انه لا يوجد لكل من الميكرومتر (um) والآنجستروم (A) متفق عليه بين المؤسسات العلمية العربية، نقترح هنا استخدام رمز(مكم) و(آنج) لكل منهما على التوالي.ويساوي10-10م.
C

λ

( هيرتز Hz )موجة/ثا F=
هنــا:
F= تـردد الأمواج الشـعاعية (موجة /ثا)
C = المسافة التي تقطعها الأمواج الإشعاعية للكهرومغناطيسية (1ثانية ضوئية )=300×10 3 كم/ثا
λ = حرف إغريقي (لامبداLambda ) يمثل طول الموجة الإشعاعية الكهرومغناطيسية
وتقاس كل من C و λ بنفس الواحدات المترية وأجزائها
1 كيلو متر (كم) =10 3 متر) م) =10 5سنتيمتر(سم) =10 6 ميليمتر (مم) =10 9 مايكرومتر (مكم) =10 12 نانومتر (نم) =10 13انغستروم (آنج) =10 15
الجدول رقم /1/ : أمواج الأشعة الشمسية الكهرومغناطيسية وأقاليمها الرئيسية
وأطوالها ( ) مقاسـة بالنانومتر (nm.نم)
وترددهـا (F) مقاسـة بالهرتـز (Hz.هـز )
أقاليم أمواج الأشعة الشمسية الكهرومغناطيسية
طول الأمواج (λ)
(nm.نم)
تـردد الأمـواج (F)
(Hz.هـز)
أشـعة جاما الكونية
10-4 – 10-2
3×1210 – 3×1910
الأشـعة السـينية X
أشـعة سينية قاسية HX
10-2 – 0.1
3 ×1910 – 3×1810
أشـعة سنية ليند SX
0.1 – 1
3 × 1810 – 3×1710
الأشـعة فوق البنفسجية UV
أشـعة فوق بنفسجية EUV
1 – 200
3×1710 – 3×1.5 × 1510
أشـعة فوق بنفسجية بعيدة FUV
200 – 300
1.5 × 1510 – 1510
أشـعة فوق بنفسجية قريبة NUV
300 – 320
1510 × 9.4 × 1410
الأشـعة الضوئية البيضاء المرئية VL
أشـعة سـوداء
320 – 380
9.4 × 1410 – 7.89 × 1410
أشـعة بنفسجية
380 – 420
7.89 × 1410 – 7.14 × 1410
أشـعة زرقـاء
420 – 490
7.14 × 1410 – 6.12 × 1410
أشـعة خضـراء
490 – 540
6.12 × 1410 – 5.56 × 1410
أشـعة برتقاليـة
540 – 590
5.56 × 1410 – 5.08 × 1410
أشـعة حمـراء
590 – 650
5.08 × 1410 – 4.62 × 1410
الأشـعة تحت الحمـراءIR
650 – 760
4.62 × 1410 – 3.95 × 1410
أشـعة تحت الحمـراء قريبة NIR
أشـعة تحت حمـراء بعيدة FIR
607 – 310
3.95 × 1410 – 3×1410
الأشـعة الصغيـرة MW
310 – 610
3 × 1410 – 3 × 1110
أمـواج الـرادار
510 – 710
3 × 1210 – 3 × 1010
أمـواج التلفزيـون
610 – 910
3 × 1110 – 3 × 810
أمـواج الراديـو
810 – 1010
3 × 910 – 3 × 710
1010 – 1210
3 × 710 – 510

C

λ

عن Chanllet (1986) Dickinson and Cheremisinoff (1980)
وحسب تردد الأمـواج باستخدام المعادلة F= حيث C= نانومتر (نمnm )
أما بالنسبة لتردد الأمواج ( F ), فقد اتفق دولياً على استبدال وحدة "موجة/ثانية"بواحدة (هيرتزHz, Hertz ) ومضاعفاتها:
كيلو هيرتز ( KHz ) ويعادل 10 3 Hz,ميجا هيرتز (MHz ) ويعادل 10 6 Hz, وجيجا هيرتز(GHz ) وتعادل 10 9 Hz.
ويبين الجدول (1) أطوال أمواج طيف الأشعة الكهرومغناطيسية وترددها وأقاليمها المختلفة.
تتباين قدرة الطاقة التي تحملها أمواج الأشعة الكهرومغناطيسية, فالأمواج القصيرة تحمل طاقة أكبر من الأمواج الطويلة, لقد تبين أن انتقال الطاقة عبر أمواج الأشعة الكهرومغناطيسية يجري على شكل سيل من كميات صغيرة أو حزم صغيرة من الطاقة متراصة وراء بعضها البعض تعرف بالفوتونات (Photons ), لها صفات الذرات وفي الوقت نفسه ليس لها كتلة, ولها صفات الأمواج ذات عزم حركي لكنها لا تحمل شحنات كهربائية. (7 ص56 ) إذن، ففوتوناتالإشعاعية الكهرومغناطيسيةالقصيرة – التي تقل أطوالها عن320 نم – تحمل طاقة كبيرة أكبر مما تحمله فوتونات الأمواج الطويلة, تمكنا من الفتك بالخلايا الحية الحيوانية والنباتية, ولحسن حظها فإن ما تشعه الشمس من هذه الأشعة يقل عن 7% من مجموع الطاقة التي تشعها, ولا يصل سطح الأرض سوى النذر اليسير جداً منها على شكل أشعة فوق البنفسجية .
أقسام طيف الأشعة الشمسية الكهرومغناطيسية:
تقسم الدراسات طيف الأشعة الشمسية الكهرومغناطيسية إلى عدة أقسام تعرف بالأقاليم (Regions ) كما هو مبين في الجدول /1/ والشكل/ 2/ وهي:
1- إقليم الأشعة الكونية: ويتمثل بأشعة (جاما Gama ) وغيرها من الأشعة التي تقل أطوال أمواجها عن 0.01 نم.
2- إقليم الأشعة السينية (x-rays ) : وتتراوح أطوال أمواجه بين 0.01-1 نم. ويضم الأشعة السينية القاسية ( HX", Hard x ray") والأشعة السينية الينة (SX", soft x ray" ).
3- إقليم الأشعة فوق البنفسجية ( Ultra Violet"UV") : وتتراوح أطوال أمواجه بين 1-320 نم. ويقسم إلى ثلاثة أجزاء تسمى وفقاً لموقعها من طيف الأشعة المرئية البيضاء الذي يليها,وهي: الأشعة فوق البنفسجية المتطرفة ( "EUV" Extrem Ultra Violet) الأشعة فوق البنفسجية البعيدة ( "FUV"Far Ultra Violet) الأشعة فوق البنفسجية القريبة (Ultra Violet"NUV" Near ). ويكون هذا الإقليم مع إقليم الأشعة السينية وإقليم أشعة جاما حوالي 7 % من مجموع الطاقة الشمسية الإشعاعية, وهي أشعة ضارة وفتاكة.
4- إقليم الأشعة المرئية البيضاء( White Visable Ray) ( 3ص 67-77 )وتتراوح أطوال أمواجه بين 320-760 نم. ويتكون من مزيج من الأشعة البنفسجية والزرقاء والخضراء والصفراء والبرتقالية والحمراء (الجدول 1), ويضاف إليها ما يعرف بالأشعة السوداء لعدم استطاعة العين رؤيتها ( 11ص49 ). وتشكل الأشعة المرئية البيضاء حوالي 44% الطاقة الشمسية الإشعاعية وهي أشعة ذات طاقة حرارية وضوئية كبيرة تلعب دوراً رئيسياً في تسخن سطح الأرض وفي مجريات الطقس والمناخ السائد عليه.
5- إقليم الأشعة تحت الحمراء ( Infra Red Ray): وتتراوح أطوال أمواجه بين 760-10 6نم, وينقسم إلى جزئين وفقاً لموقعها من طيف الأشعة المرئية البيضاء السابقة له,هما: الأشعة تحت الحمراء القريبة (Infra Red"NIR" Near)وتشكل 37%من مجموع الطاقة الشمسية, والأشعة تحت الحمراء البعيدة (Far Infra Red FIR"") وتشكل حوالي 11% من مجموع الطاقة الشمسية, لا تتمكن العين من رؤية الأشعة تحت الحمراء, ولكن يمكننا أن نشعر بحرارتها.
6- إقليم الأشعة الصغيرة ( "MWR" Micro Waves Ray) وتتراوح أطوالها بين 10 5-10 7 وتشكل أقل من 1% من مجموع الطاقة الشمسية.
7- إقليم أمواج الرادار (Radar Waves): وتتراوح أطواله بين 10 6- 10 9 نم
8- إقليم أمواج التلفزيون (TV Waves): وتتراوح أطواله بين 10 8- 10 10 نم
9- إقليم أمواج الراديو (Radio Waves): وتتراوح أطواله بين 10 10- 10 12 نم
إقليم الأشعة الشمسية المرئية البيضاء والألوان:
يتبين لنا أن الأشعة الشمسية المرئية البيضاء, متكونة من مزيج من الأشعة الملونة حين تعبر خلال موشور زجاجي,فتخرج منه متفرقة ومنكسرة, ويزداد انكسارها عكساً مع طول أمواج كل منها, فتظهر معكوسة الترتيب, الأشعة البنفسجية في الأسفل لأنها أشد انكساراً تليها الزرقاء ثم الخضراء والصفراء والبرتقالية وتظهر الأشعة الحمراء في الأعلى لأنها أقل انكساراً(الشكل 3). ويحدث ذلك أيضاً في ظاهرة قوس قزح(Rainbow). وعادة يتشكل قوس قزح عندما تهطل الأمطار في جزء من السماء وتكون ساطعة في الجزء الآخر منها, وأحياناً يحدث خلال قطيرات الما المتناثرة فوق مساقط المياه وفوق نوافير المياه أيضاً, فتقوم قطيرات الأمطار والقطيرات المتناثرة بدور الموشور الزجاجي.فعندما تدخل الأشعة الشمسية البيضاء قطيرات الماء تقل سرعتها وتنكسر وتتفلاق إلى أطياف أشعة ألوانها الأساسية. وعندما تصطدم هذه الأشعة بمؤخرة القطيرات ترد خارجة منها منكسرة ومتفرقة أيضاً مشكلة قوساً بديعاً من الألوان البنفسجية والزرقاء و الخضراء والصفراء والبرتقالية والحمراء(7).
تتمكن العين من رؤية الأشعة الشمسية البيضاء. وأطياف أشعتها الملونة لأن هذه الأمواج الكهرومغناطيسية تثير نهايات الأعصاب البصرية المنتشرة على شبكية العين على شكل عصيات أو أقماع بصرية,فتقوم بإرسال إشارات للدماغ تمكننا من إدراك الألوان ورؤيتها. تمكن العصيات العين من التفريق بين الضوء والظلام, ومشاهدة اللوتين الأبيض والأسود فقط, لأنها لا تستطيع التميز بين أشعة الألوان المختلفة, بينما تستطيع الأقمار استشعار الأشعة الملونة التي تنحصر أطوال أمواجها بين 380-670 نم والتميز بينها, فتمكن العين من رؤية الألوان جميعها, ولا تستطيع الأشعة التي تقل أطوال أمواجها عن 380 نم أو تزيد عن 670 نم إثارة نهايات الأعصاب البصرية لذلك لا تراها العين.
فالحقيقة فألوان الأشياء التي تراها العين ليست إلا أشعة كهرومغناطيسية مختلفة أطوال الأمواج منعكسة على سطح هذه الأشياء. فمثلا عندما تسقط أشعة الشمس الضوئية على سطح أخضر اللون, يمتص هذا السطح أشعة الألوان كلها عدا أشعة اللون الأخضر التي يعكسها فتراها العين. وهكذا بالنسبة لكل الأشياء الملونة, فسطوحها تمتص طيف الأشعة المرئية الواصل إليها كله وتعكس الأشعة الموافقة للونها فقط.
الشمس المتلونة والسماء الزرقاء:
أما بالنسبة للشمس, فيعود لونها الأبيض اللامع في وسط النهار إلى شدة إشعاعها في هذا الوقت وسقوط أشعة ضوئها المرئية جميعها على الأقماع البصرية للعين بشدة متساوية تقريباً فلا تستطيع التمييز بينها ونستشعرها كأنها أشعة واحدة بيضاء. بينما عند شروق الشمس أو غروبها تخترق الأشعة الشمسية الغلاف الجوي بزاوية ضعيفة, حوالي 4 5درجات قاطعة حيزاً كبيراً منه أكثر سماكة من الحيز الذي تقطعه وقت الظهر بحوالي 12 ضعف, فخلال هذا السماكة الكبيرة تتبعثر الأشعة القصيرة (البنفسجية والزرقاء و الخضراء) بواسطة جزيئات الهواء الدقيقة الأصغر منها حجماً بشكل انتقائي في كل الاتجاهات خلال الغلاف الجوي. بينما تتمكن الأشعة الصفراء والبرتقالية والحمراء من الدخول إلى عين الناظر مظهرة الشمس بلون أصفراء- برتقالي زاهي, وفي حال وجود جسيمات وذرات غبار معلقة في الهواء, تزيد أقطارها قليلاً عن طول أقطار جزيئات الهواء, تتبعثر الأشعة الصفراء وتظل الأشعة البرتقالية والحمراء مظهرة الشمس بلون برتقالي-أحمر, وإذا تواجدت الجسيمات بكميات كبيرة تتبعثر أشعة ضوء الشمس كلها عدا الأشعة الحمراء فتظهر الشمس بلون أحمر وذلك ما يحدث عند انفجار البراكين التي تملوء السماء بجسيمات دقيقة, أو فوق المحيطات حيث يكون الهواء مترعاً بذرات بلورات الملح الدقيقة وذرات بخار الماء, وأحيانا إذا كانت أحجام الجسيمات متجانسة تعمل على بعثرة الأشعة الشمسية الضوئية بشكل انتقائي مظهرة الشمس بعدة ألوان, حتى في منتصف النهار تبدو الشمس برتقالية أو خضراء أو حتى زرقاء ( 3ص 67-73 ).
ومن الملاحظ أنه خلال عمليات التبعثر المذكور في مختلف أشكاله, حتى في منتصف النهار, تعمل جزيئات الهواء دائماً إلى بعثرة الأشعة الشمسية الضوئية القصيرة جداً, البنفسجية والزرقاء و الخضراء, انتقائياً في كافة الاتجاهات في الغلاف الجوي, بالإضافة إلى ذلك فإن المخاريط البصرية في العين شديدة الحساسية لهذه الأشعة ما يجعل الشماء تبدو لنا زرقاء في الاتجاهات كلها وفي الأحوال جميعها من حساب شدة الطاقة الإشعاعية ومقدارها كمياً.

الوحدات المستخدمة في قياس الطاقة الإشعاعية الحرارية:
عادة تستخدم واحدات القوة ( Power)في قياس الطاقة الإشعاعية, وتعرف القوة بأنها "كمية الطاقة المنقولة خلال واحدة الزمن ", لذلك توجد عدة واحدات مستخدمة في قياس الطاقة الإشعاعية, أهمها وأكثرها استخداماً في دراسات الطقس والمناخ هي وحدة السعر الحراري أو حريرة ("Cal" Colorie ) ويعرف السعر الحراري "بأنه كمية الطاقة الحرارية المتطلبة لرفع درجة حرارة غرام واحد من الماء درجة مئوية واحدة, من14.5 إلى 15.5 درجة مئوية وتساوي 4.4855×10 إيرج أو 4.1855 جول." وعند استخدامها في قياس الطاقة الإشعاعية فإنها تعبر عن مقدار الطاقة التي تشعها أو تمتصها واحدة المساحة ( 1سم2 ) من سطح ما خلال واحدة زمن ( ثانية, دقيقة, ساعة, يوم,……الخ ). وتكتب كما يلي : " غرام –سعر حراري/سم2 ز أو حريرة/سم2 ز وفيما بعد اقتراحات واحدة (لانجلي Ly, Langley ) عوضا ًعن غرام –سعر حراري /سم2 ز فأصبحت واحدة القياس لانجلي /ز, وذلك تخليدا للعالم صومائيل لانجلي ( ,Samual P. Langley1906-1834) الذي قدم الكثير من الإسهامات الرائدة في أبحاث الأشعة الشمسية. وكلا الواحدتين تستخدم الآن بشكل متبادل, وعادة, عند حساب الطاقة الإشعاعية تعتمد الدقيقة واحة للزمن, فتصبح واحدة قياس غرام-سعر حراري /سم2 أو لانجلي/د ويمكن استخدام( الكيلو غرام –سعر حراري /م2د )أو كيلو لانجلي/د المعادلة إلى 100سعر حراري /سم2د أو 1000 لانجلي /د على التوالي.
وتفضل بعض الدراسات استخدام واحدة الإرج (1023892×10حريرة) أو الجول (0.2389 حريرة) أو الواط (1جول/ثا=0.23892 حريرة ). وحديثاً تمثيل الدراسات وخاصة في المجالات الهندسية إلى استخدام واحدة "واط/م2" (1.43352 -3 لانجلي/د)وبذلك فإن واحدة لانجلي/د يعادل ( 697.6 واط/م2).
تشكل الطاقة الحرارية وطرق انتقالها:
تتولد الطاقة الحرارية في بادئ الأمر, عندما تمتص الأشياء, مهما كان نوعها. الطاقة الشمسية الإشعاعية الواصلة إليها على شكل أمواج كهرومغناطيسية وتحولها إلى طاقة حرارية تخزنها في داخلها فتزيد درجة حرارتها ثم تعود وتطلقها مرة أخرى والأمر نفسه يحدث عندما نعرض أنفسنا إلى نار المدفاة, فعندما تمتص أجسامنا الأمواج الكهرومغناطيسية.

عمليات الإشعاع ونقل الطاقة الحرارية وتبادلها عند سطح الأرض:
عندما تصل الطاقة الشمسية الإشعاعية تحملها فوتونات أمواج الأشعة الكهرومغناطيسية من سطح الشمس عبر الفضاء إلى الأرض تدخل في عمليات عديدة من التحولات والتبدلات, تبدأ بامتصاص سطح الأرض والغلاف الجوي والأشياء والأجسام فيهما لهذه الطاقة, ومن ثم إشعاعها مرة أخرى لبعضها البعض وتتبادلها فيما بينها.
إذن عند دراسة عمليات الإشعاع الجاري على سطح الأرض وفي الغلاف الجوي, علينا إدراك وجود نوعين من الطاقة الإشعاعية وهما:
1- الطاقة الشمسية الإشعاعية والتي تشكل المصدر الأساسي لكل الطاقة الواصلة إلينا بمختلف أشكالها.
2- الطاقة الأرضية الإشعاعية بما فيها طاقة الغلاف الجوي الإشعاعية والتي هي أصلاً طاقة مستمدة من الطاقة الشمسية الإشعاعية بالإضافة إلى الطاقة التي تشعها الأجسام والأشياء إلى بعضها البعض, وعلينا أن ندرك أيضاً أن العمليات المتحكمة بالعلاقة بين أنواع الطاقة الإشعاعية كثيرة ومعقدة ومتشابكة, لذلك علينا أن نوجه اهتمامنا إلى تلك العمليات المؤدية إلى تشكل ظواهر الطقس والمناخ على سطح الأرض وطرق تصرفها, والقوانين الضابطة لها والتي تمكن من قياسها كمياً, وقبل كل شيء علينا توضيح بعضا لمفاهيم المتعلقة بهذا الموضوع.
الإشعاع:
يعرف الإشعاع بزنه "عملية نقل الطاقة بواسطة فوتونات الأمواج الكهرومغناطيسية دون الحاجة إلى وسيط أو تماس مع المصدر المشع", وهذه العملية التي تصلنا بواسطتها الطاقة الإشعاعية الشمسية, مع ذلك علينا أن نعلم أن سطع الأرض والغلاف الجوي وأجسامنا وكل الأشياء التي حولنا مهما كانت صغيرة أو كبيرة ومهما كان تركيبها الفيزيائي والكيميائي, ومهما كانت باردة تشع طاقة إشعاعية (Radiant Energy ) تتناسب طرداً مع درجة حرارتها شريطة أن لا تهبط درجة حرارتها إلى دون
-273.15 مئوية أما ما يعرف بالصفر المطلق, فكلما زادت درجة حرارتها عن هذه الدرجة كلما زادت طاقتها الإشعاعية.
هذه الحقيقة توصلنا إليها كل من العالمين جوزيف ستيفان(Josif Stefan, 1835-1893 م) ولودوبج بولتزمان (Ludwig Boltzman 1844-1906 م )في أواخر القرن التاسع عشر, وعرفت بقانون ستيفان بولتزمان نسبة لهما.

الاستشعار وامتصاص الطاقة الإشعاعية:
عندما تسقط أمواج الطاقة الإشعاعية الكهرومغناطيسية المنبعثة من الشمس على سطح الأرض وعلى غلافها الجوي وعلى كل الأشياء, تقوم هذه الأشياء يقوم هذه الأشياء بامتصاصها وتحميلها إلى طاقة داخليةInternal Energy)) (3ص 48-55), وخاصة طاقة حرارية تزيد من درجة حرارتها, فتعود وتشعها مرة أخرى على شكل أمواج كهرومغناطيسية إلى ما حولها.
إذن فإن الأشياء عندما تتعرض إلى الطاقة الشمسية الإشعاعية أو الطاقة الإشعاعية التي تشعها الأشياء من حولها وتمتصها فإنها تقوم بعملية (استشعاع) وعندما تقوم بإطلاقها فإنها تقوم بعملية (إشعاع), ويبدو واضحاً أنه كلما ازدادت قدرتها على الإستشعاع وكمية الطاقة الإشعاعية الممتصة كلما تسخنت الأشياء وازدادت قدرتها على الإشعاع, كما ويبدو واضحاً أيضاً أن الأشياء التي تمتص أو تستشع طاقة إشعاعية أكبر مما تشعه فإنها ستسخن, واذا شعت طاقة إشعاعية أكثر مما تستشع فإنها تبرد, وإذا كان مقدار ما تشعهمن طاقة إشعاعية مساوية لما تستشعه فإن درجة حرارتها تظل ثابتة وتكون هذه الأشياء في حالة توازن إشعاعي( Radiation Equilbrium), وهذا ما يفسر لنا الحالة الطبيعية الإشعاعية لكل الأشياء حولنا بما فيها الشمس, فقد لاحظنا فيما تقدم أنه عندما يشع سطح الشمس (الفوتوسفير) طاقة إشعاعية فإنه في الوقت نفسه يمتص طاقة حرارية تتولد في نواتها معادلة لم يشعه, ومن خلال خبراتنا اليومية نلاحظ أيضاً أن جميع الأجسام والأشياء حولنا تحافظ على توازنها الإشعاعي مع محيطها المتواجد فيه, وفي حالة اكتساب بعضها طاقة إشعاعية إضافية فإنها تسعى إلى إشعاعها والعودة إلى حالة توازنها الإشعاعي, والأمثلة على ذلك كثيرة لا حصر لها.
الطاقة وتحولاتها:
لابد لنا من الإشارة إلى أن الطاقة الإشعاعية الشمسية الساقطة على سطح الأرض تتعرض لتحولات عديدة من الطاقة مثل الطاقة الحرارية ( Heat Energy ), الطاقة الكامنة (Potential Energy ), الطاقة الحركية ( Energy Kinetie), الطاقة الكيميائية ( EnergyChemical ) لكن تظل الطاقة الحرارية أهمها وأكثرها حضوراً بالنسبة للعمليات المؤدية إلى تكوين طقس الأرض ومناخها, بالإضافة إلى أن أشكال الطاقة الأخرى تبقى ضئيلة نسبياً وستتحول بعملية أو أخرى إلى طاقة حرارية, وفي نهاية المطاف إلى طاقة إشعاعية تشعها الأشياء والأجسام التي تمتصها (8 ص 9-10 ) كما هو مبين في
ما يلي:
طاقة شمسية إشعاعية طاقة حرارية (محسوسة +كامنة) أشعة تحت الحمراء
حرارة كافيـة حرارة محسوسة أشعة تحت الحمراء
طاقة كامنة طاقة حركية طاقة حرارية أشعة تحت الحمراء
طاقة كيميائية طاقة حرارية أشعة تحت الحمراء
قوانين الإشعاع( Radiation Laws):
ولتفهم عمليات إشعاع الطاقة وامتصاصها (استسعاعها) وإبرازها بشكل كمي لا بد لنا من معرفة القوانين الضابطة والتي يمكن حسابها وتعرف هذه القوانين بـ( قوانين الإشعاع) ولتوضيح هذه القوانين وتسهيل استخدامها يجب الانطلاق من معيار مثالي تنطبق عليه هذه القوانين ومن تصميمها لذلك افترض العلماء وجود أجسام حرارية مثالية تمتص الطاقة الإشعاعية الساقطة عليها وتشعها في أقصى طاقة ممكنة وعرفت هذه الأجسام بالأجسام السوداء (Black bodies)وهي أجسام افتراضية تمتص أمواج الطاقة الإشعاعية الساقطة عليها كلها دون أن تعكسها أو تنفذها خلالها وتشعها في أقصى كمية عند أي درجة
حرارة لها وفي جميع الأطوال الموجبة ولا تدك تسميتها بالسوداء للدلالة على لونها وإنما للدلالة على أن أجسامها كتيمة للإشعاع (Opaque)وبتطبيق قوانين الإشعاع يمكن تحديد ميزات الأجسام السوداء وغيرها وكيفية تصرفها قوانين الإشعاع كثيرة لكنا سنحصر اهتمامنا بالقوانين الرئيسة والمهمة في دراسة الطقس والمناخ .
(1) وفقاً لقانون ستيفان بولتزمان تتناسب كمية الطاقة الإشعاعية(E) التي تشعها واحدة المساحة (1سم2) من سطح الجسم الأأسود طرداً مع القوة الرابعة لدرجة حرارتها الكلفاتنية (Tk4) خلال واحدة الزمن (1 دقيقة ) :
حريرة / سم2 د ك 4 E=σ Tk . e
هنا: σ = ثابت ستيفان بولتزمان 8.123 × 10 – 11 حريرة/سم2 د ك (5.667 × 10 -12 واط/سم2, د, ك4), Tk = درجة الحرارة الكلفانية وتساوي: درجة الحرارة المئوية +272.15, e= معامل الإشعاعية (Emissivity) ويساوي الواحد عند الأجسام السوداء, وتقل عن الواحد عند بقية الأجسام غير السوداء والمعروفة بالأجسام الرمادية (grebodies ) التي تشع طاقتها بشدة أقل من الأجسام السوداء وعند كل أطوال الأمواج وعند أي درجة.
ويبين الجدول التالي قيمة(e) لبعض المواد, وهي نسبة مئوية مما تشعه الأجسام السوداء
المادة
e
جلد الإنسان
98%
الماء الصافي
95%
الجليد
96%
الرمل الجاف
92%
الثلج
85%
الأسمنت
92%

عن: Hudson (1969)
2898

Tk

(2) وفقا لقانون وين للإزاحة (Wien Displacement Law) الذي اقترحه العالم ولهالم وين (1964-1928) , فان "للجسم الأسود طول موجة إشعاعية معينة يشع عندها طاقته الإشعاعية القصوى ويتناسب طول هذه الموجة عكسيا مع درجة حرارة الجسم " . فكلما ازدادت درجة حرارة الجسم كلما انزاح طول الموجة التي يطلق عندها طاقته القصوى نحو أطوال الأمواج القصيرة كما هو مبين في الشكل ، ويكتب قانون وين الشكل التالي :
مايكرو متر /ك Max = λ
حيث أن: Max λ = طول الموجة التي يطلق عندها الجسم الأسود أقصى طاقة إشعاعية له.
Tk = درجة الحرارة الكلفانية
(3) وفقاً لقانون وين الثاني (Weins Scond Law) ، " تتناسب شدة الطاقة الإشعاعية القصوى () التي تشعها واحدة المساحة (1سم2) من الجسم الأسود خلال واحدة الزمن (1 دقيقة ) طرداً مع القوة الخاصة لدرجة حرارتها الكلفانية (1ص37) أي :
حريرة /مايمرومتر دك CTk5= Emax
هنا فان C= ثابت وين ويعادل 1.8435×10-14 حريرة /سم2 د.ميكرو متر، ك(1.286×10-11 ) واط /م2 ، مايكرو متر ، ك .
E

a

(4) وفقا لقانون كيركهوف (Kirchhoffs Law)، فان ما تشعه الأجسام من طاقة إشعاعية (E) إلى ما تمصه منها (a) تتوقف على طول الاشعاع (λ) ودرجة حرارة الجسم (T) فقط :
,T)λ(F=

ويقتح قانون كيركهوف أيضاً " ان الأجسام جيدة الامتصاص لأمواج طاقة إشعاعية معينة فانها في الوقت نفسه جيدة في اشعاعها وبالمقابل فالأجسام رديئة الامتصاص لأمواج طاقة إشعاعية فانها ايضاً في إشعاعها وبالتالي يجب أن تكون إشعاعية الأجسام لأطوال أمواج (λE) معينة مساوياً لامتصاصيتها (λa) :
λ E = λa
لذلك فالأجسام التي تتصرف كأجسام سوداء تشع طاقة إشعاعية اكثر من غيرها من الأجسام لأنها تقوم بامتصاص الأمواج الإشعاعية الساقطة عليها كلها ، وتعود وتشعها في أقصى كمياتها تبعاً لدرجة حرارتها وطول الأمواج الإشعاعية .

الأجسام انتقائية الامتصاص (Selective Obsorbing Bodies):
مع أنه لا يوجد في الطبيعة أجسام سوداء كاملة فيمكننا ال حد كبير زن نعد الشمس وألارض وكثير من الاشياء حولنا خاصة تلك الكتيمة للأشعة كأنها أجسام سوداء تنتطبق عليها قوانين الاشعاع المذكورة .
لكن بالمقابل يوجد الكثير من الأجسام حولنا بما فيها الغلاف الجوي لا تتصرف كأجسام سوداء لأنها لا تمتص أمواج الطاقة الإشعاعية الساقطة عليها كلها وإنما تمتص بعضها وتنفذ عبرها بعضاً منها وتعكس بعضها الآخر لذلك تعرف هذه الأجسام بأنها انتقائيى الامتصاص ويعد الزجاج مثالاً نموذجياً لها إذ أنه يعكس جزءاً من الأمواج الإشعاعية الساقطة عليه ويمتص بعضاً من الأشعة تحت الحمراء والاشعة فوق البنفسجية وينفذ طيف الأشعة المرئية كله ، وكذلك تفعل صفائح البلاستيك الشفافة وكل الأجسام الصلبة الملساء الشافافة والماء والسوائل جميعها والأبخرة والغازات ويعد الثلج مثالاً مثيراً لهذه الأجسام فلونه الأبيض الناصع يدل على قدرته على عكس أمواج إقليم الاشعة المرئية البيضاء كلها وقد لوحظ أن تعرض المفرط للأشعة المرئية المنعكسة من سطح الثلج تؤدي ال ما يعرف بالعمى الثلجي (Snow Bindess) المؤقت لذلك تنحصر قدرة الثلج في امتصاص أمواج الأشعة تحت الحمراء فقط وبالتالي فإنه مشع جيد لها.
ومن وجهة النظر المناخية يعد الغلاف الجوي أهم هذه الأجسام حيث تقوم بعض غازاته مثل الاوكسجين (O2) والأوزون (O3) وثاني أوكسيد الكربون (Co2)وبخار الماء (H2o) وثاني اكسيد النتروز (N2o)وغيرها بدرو الماصات الانتقائية بكفاءة عالية لبعض الامواج الإشعاعية الشمسية والأرضية الشكل دون غيرها بينما في الوقت نفسه يسمح الغلاف الجوي بعبور أمواج طيف الأشعة المرئية وتهمل بعض عناصره الأخرى على عكس جزء كبير منها بعبور وذلك مما يؤثر عللا الطاقة الإشعاعية الشمسية الواصلة إلى سطح الأرض والأرضية وبالتالي على مجريات الطقس والمناخ وسنقوم فيما بعد بدراسة تأثير الغلاف الجوي في هذه الأمور بالتفصيل .
اذن يتضج لنا وفقاً لقانون كيركهوف إن هذه الأجسام قادرة على إشعاع أمواج الطاقة الإشعاعية التي امتصها ولا قدرة لها في اشعاع أمواج الطاقة الإشعاعية التي لم تمتصها بالإضافة إلى ذلك لا تشع أمواج الطاقة التي امتصها بكفاءة الأجسام السوداء (الجدول ) لذلك لا تعد هذه الأجسام أجساماً سوداء ولكن مع ذلك وخلال الاستخدامات العامة التي لاتقتضي دقة كبيرة يمكننا التعامل معها م حيث إشعاعها لأمواج الطاقة التي امتصتها عند درجة حرارتها كأنها أجسام سوداء إلى حد مقبول كما هو مبين في الجدول e:

الجدول : كعامل الإشعاعية لبعض الأجسام غير السوداء للأشعة
تحت الحمراء نسبة إلى ما تشعه الأجسام السوداء
الجسم
e
الجسم
e
جلد الإنسان
98%
الصحراء
90%-91%
الماء
95%
الأعشاب الطويلة
0.90
الثلج الجديد
82%-99.5%
الحقول والشجيرات
0.90
الجليد
0.96
الغابات المخروطية
0.90
الأسمنت
0.92
أوراق النباتات
0.90
الرمل الجاف
0.92
0.97-0.98

عن: Lockwood (1979) و Batton (1984)
ميزات الطاقة الإشعاعية الشمسية والأرضية:
باستخدام قوانين الإشعاع, يمكننا أن نحدد بعض الميزات الهامة لكل من الطاقة الإشعاعية الشمسية والأرضية, علماً بأن درجة حرارة سطح الشمس تعادل 5800 ك, ودرجة حرارة سطح الأرض تعادل 288 ك, فاستناداً لقانون وين للإزاحة:
2898

Tk

Max = λ

نلاحظ أن طول الأمواج الكهرومغناطيسية التي يشع عندها سطح الشمس معظم طاقته الإشعاعية تعادل 0.5 مايكرومتر (الشكل), لذلك فإنها تعرف بالطاقة الشمسية الإشعاعية قصيرة الأمواج (Solar Short Radiation), بينما تبلغ طول الأمواج الكهرومغناطيسية لبتي تشع عند سطح الأرض معظم طاقته الإشعاعية 10 مايكرومتر (الشكل), لذلك فإنها تعرف بالطاقة الأرضية الإشعاعية طويلة الأمواج (Terrestrial Longwave Radiation ).والحقيقة أن 99% من طيف أمواج الطاقة الإشعاعية الشمسية المحصورة بين 0.15-4 مايكرومتر, بينما يقع 99% من أمواج الطاقة الإشعاعية الأرضية بين 3-100 مايكرومتر, ضمن طيف الأشعة تحت الحمراء الطويلة الأمواج (8ب ص8, 5ص40,8ص24 ).
واستناداً إلى قانون وين الثاني:
Tk5×10-14×1.8435= Emax
تبلغ الطاقة القصوى التي يشعها 1سم2من سطح الشمس حوالي 121×10 3 لانجلي/د, بينما لا تزيد كمية الطاقة القصوى التي يشعها 1سم2 من سطح الأرض عن 0.03653 لانجلي/د. بذلك فإن ما تشعه واحدة المساحة من سطح الأرض عن طاقة إشعاعية قصوى أشد مما تشعه واحدة المساحة من سطح الأرض من طاقة إشعاعية قصوى أشد مما تشعه واحدة المساحة من سطح الأرض من طاقة إشعاعية قصوى بحوالي 3.313×10 3 مرة.
ووفقاً لقانون ستيفان بولتزمان:
Tk4× 10×E= 80123
فإن مجموع ما يشعه 1سم2 من سطح الأرض, الذي يشع 0.56 لانجلي/د.
وأخيراً,لا بد من ملاحظة أن الطاقة الإشعاعية الشمسية تصدر من سطح الشمس منطلقة عبر الفضاء داخلة إلى سطح الأرض عبر الغلاف الجوي ، لذلك عادة ما تعرف بـ ( الاشعة الشمسية الداحلة Income Solar Radiation) وبما أن سطح الأرض والاجسام التي عليه تتعرض لهذه الأشعة وتمتصها أي تستشعها أو بكلمة أخرى تتشمش بها لذلك تعرض هذه الأشعة الشمسية الداخلة بالتشمس (Insolation) أيضا وهذه التسمية مشتقة من عبارة (Income Solar Radiation) واختصارا لها وفيما يلي من هذه الطاقة الإشعاعية الأرضية تنطلق من سطحها عابرة غلافها الجوي إلى الفضاء الخارجي لذلك تعرف بالأشعة الأرضية الخارجة (Outgoing Trrestrial Radiation) أو العائدة (Terrestrial Back Radiation ) .
تأثيرات الغلاف الجوي كجسم انتقائي الامتصاص للطاقة الإشعاعية :
من وجهة النظر المناخية يعد الغلاف الجوي أهم الأجسام انتقائية الامتصاص للطاقة الإشعاعية الشمسية و الأرضية إذ تقوم بعض غازاته كما هو مبين في الشكل / / بدور الماصات الانتقائية بكفاءة عالية ففي طبقات الجو العالية ( حوالي 90كم) تقوم جويئات الاكسجين (O2) بامتصاص الأشعة فوق البنفسجية المتطرفة و البعيدة التي تتراوح أطوال أمواجها بين 10 – 100 نم وتقوم جزيئات الأوكسجين (O3) عند ارتفاع يتراوح بين 10 – 55 كم بامتصاص زمواج الأشعة فوق البنفسجية البعيدة والقريبة المحصورة بين 200 – 320نم وبعض أمواج الأشعة تحت الحمراء يناهز طولها 960نم .
وعند الاتفاعات التي تقل عن 10كم تقوم جزيئات بخار الماء (H2O) بامتصاص معظم أمواج إقليم الأشعة تحت الحمراء الأرضية بين 000 1 – 000 8 والتي تزيد عن 000 12 نم أيضاً كما تقوم جزيئات ثاني أوكسيد الكربون (Co2) بامتصاص أمواج هذه الأشعة عند 000 4 نم وبين 000 13 – 000 17 نم وتقوم جزيئات الميثان (CH4) بامتصاص عند 2500نم و 7000نم جزيئات النتروز (NO2) عند 400 نم و 7000 نم لذلك يمكننا أن ندع هذه الغازات بـ " الغازات الحرارية " ولا تستطيع هذه الغازات امتصاص أمواج الأشعة الأرضية تحت الحمراء المحصورة بين 8000-14000 نم والى حد ما بين 4000-6000نم وبين 17000-21000 نم ( الشكل ) فتنطلق هذه الأمواج عابرة الغلاف الجوي إلى الفضاء الخارجي لذلك فإنها تدعى نوافذ الغلاف الجوي (Atmospheric Windows) .
عندما تمتص الغازات الحرارية وعلى رأسها Co2 وبخار الماء (H2O) الأشعة الأرضية تحت الحمراء وتمتصها من الانطلاق إلى الفضاء الخارجي تزداد حرارتها وتزداد طاقتها الحركية وتصادماتها العشوائية مع بعضها البعض ومع ما يحيط بها من جزيئات غازية, مولدة طاقة حرارية إضافية (طاقة حرارية ذاتية), ونتيجة لذلك تتسخن الأجزاء السفلى نم الغلاف الجوي, وتشع طاقة إشعاعية تحت حمراء إلى سطح الأرض متسخنة, وتتالى هذه العملية الإشعاعية,وبذلك تشكل الغازات الحرارية طبقة عازلة حول الأرض تمنع جزءاً من أمواج الأشعة الأرضية تحت الحمراء من الانطلاق إلى الفضاء, وبذلك فإنها تشكل ما يعرف بظاهرة "الإنحباس الحراري". ولقد بينت الدراسات أنه لولا وجود Co2 وبخار الماء (H2O ) لكان متوسط درجة حرارة سطح الكرة الأرضية حوالي -20 مئوية أو أقل بحوالي 35 مئوية عما هي عليه حالياً(3ص 59 ,35ص121).
تدعى عملية امتصاص الغازات الحرارية لأمواج الأشعة الأرضية تحت الحمراء عملية "تأثير الغلاف الجوي Atmospherc Effect". لكنها في الماضي كانت تدعى " تأثير البيوت الخضراء Greenhouses Effect ", حيث كان يعتقد أن تسخين الهواء في البيوت الخضراء الزجاجية أو البلاستيكية المستخدمة في الزراعة يعود إلى سماح ألواح زجاجية أو البلاستيكية لأمواج الأشعة الشهية المرئية البيضاء بعبورها, لكنها في الوقت نفسه تمنع
أمواج الأشعة الأرضية تحت الحمراء من مغادرة البيوت الخضراء. لكن تبين فيما بعد أن ذلك غير صحيح وأن تسخن هواء البيوت الخضراء يعود إلى ركوده وعدم امتزاجه مع الهواء البارد خارجها (3ص59,35ص121).
كما تقوم الغيوم المنخفضة بامتصاص معظم أمواج الأشعة الأرضية تحت الحمراء بما فيها المحصورة بين 8000-14000 نم, وتعود وتشعها مرة أخرى باتجاه سطح الأرض فيمتصها ويتسخن بها ثم يعود ويشعها مرة أخرى إلى الغيوم وهكذا, لكن في الوقت نفسه فإن الغيوم سيئة الامتصاص لأمواج الأشعة الشمسية المرئية البيضاء لذلك فإننا نلاحظ ارتفاع درجة الحرارة في أيام الشتاء ولياليها المقيمة وانخفاضها في الأيام الصحوة ولياليها, ويقدر مجموع ما تمتصه الغيوم وجزيئات الهواء من التشمس الواصل إلى قمة الغلاف الجوي بحوالي 19%, بالإضافة إلى ذلك, تقوم الغيوم بعكس حوالي 20% من التشمس الواصل إلى قمة الغلاف الجوي, كما تعكس جزيئات الهواء حوالي6%منه, بينما لا يعكس سطح الأرض سوى 4% منه وسطياً مهملاً, وتظل متوازية, ويكون انحناء جبهتها عند سطح الكرة الإشعاعية التي تقع عندها الأرض مهملاً أيضاً وتشكل سطحاً مستوياً تتعامد معه الأشعة الشمسية المكونة لهذه الحزمة.

الأشعة الشمسية المتوازية:
تنطلق الأشعة الشمسية من سطح الشمسية متجانسة ومتماثلة في جميع الاتجاهات مشكلة كرة إشعاعية مركزها الشمس تزداد اتساعاً مع الابتعاد عنها في الفضاء الكوني, لكن مع ذلك ينظر للأشعة الشمسية الواصلة إلى سطح الأرض على أنها أشعة متوازنة, لأنه بسبب صغر المسافة بين الأرض والشمس من جهة,وبسبب ضآلة طول قطر الأرض من جهة أخرى, يظل إنفراج الأشعة الشمسية المشكلة للخدمة الإشعاعية الساقطة على سطح الأرض.
التشميس الواصل إلى الأرض :
تطلق الشمس كميات هائلة من الطاقة الإشعاعية الكهرومغناطيسية وكما لاحظنا فان ما يشعه1سم2 من سطح الشمس على شكل كرة إشعاعية متزايدة الاتساع تتناقص شدتها ولا يصل إلى الأرض سوى النذر اليسير وذلك لأن شدة الطاقة الإشعاعية الشمسية تتناسب عكساً مع مربع المسافة التي تقطعها الأمواج الشعاعية في الفضاء :
1

d2

I

1

d2

I=k

هنا : 1= مقدار أو شدة الطاقة الإشعاعية الواصلة
D= المسافة بين الجسم المشع ( الشمس ) والجسم المستشع (الأرض)
K= ثابت
واستنادا لذلك فعند وصول الطاقة الإشعاعية الشمسية إلى المدى الذي تقع عنده الأرض (سطح الكرة الإشعاعية التي تقع عندها الأرض ) تصبح شدتها أقل من 2لانجلي /د (2حريرة/سم2د) وقد رأينا فيما تقدم أنه بامكاننا تسمية الطاقة الشمسية الإشعاعية الداخلة إلى سطح الأرض (Income Solar Radiation) بالتشمس (Insolation) ومع وجود الغلاف الجوي للأرض تميل دراسات عديدة إلى تسمية التشمس الواصل إلى قمة الغلاف الجوي " الطاقة الإشعاعية فوق الأرضية (Extra Terrestrial Radiation) لتمييزه عن التشمس الواصل إلى سطح الأرض .
ويمكن حساب مقدار الطاقة الشمسية الإشعاعية أو التشمس الواصل إلى واحدة المساحة من سطح يقع عند قمة الغلاف الجوي يتعامد مع الاشعى الشمسية خلال دقيقة واحدة من الزمن بمعرفة الطاقة الإشعاعية التي يشعها سطح الشمس وقسمتها على مساحة الكرة الأرضية الاشعاية التي شكلها الأشعة الشمسية والتي تقع عند سطحها الأرض :
10-11(4πr2)× T4 σ

4π d2

Io =

هنا : Io= مقدار التشمس الواصل
σ = ثابت ستيفان (10-11 × 8.132 حريرة /دك4)
T = درجة حرارة الشمس ك (5800) درجة
rs = نصف قطر الشمس (710 × 6955 سم )
107)2×6955)×3.14×(5800)4× 10-11×8.132

10-11)×(149.6 × 3.14 × 4

d = البعد بين الارض والشمس أو نصف قطر الكرة الإشعاعية التي تقع الأرض عند سطحها (1110 × 149.6 سم ) = 3.14 وبالتعويض بالمعادلة :
حريرة/سم2د(لانجلي/د)1.989=

ومن هذه المعادلة يمكن حساب قيمة الثابت (k) في المعادلة إذ يساوي 4.4504×2610 لانجلي/د.
ويهتم المناخيون والرصاد الجويون والعاملون في مجال الطاقة الشمسية بقياس هذا المقدار من الطاقة الشمسية الإشعاعية (التشميس) الواصل إلى سطح الأرض وحسابه بدقة لأنه يشكل الأساس لحسابات الطاقة الشمسية والقوانين الناظمة لها ويعد معياراً لها وقد اتفق عامليا على تسميته بـ "الثابت الشمسي Solar Constant" .
قامت دراسات عديدة بقياس الثابت الشمسي وحسابه وكان ابوت ورفقاه (Abbteto) في مؤسسة سميتسونيان (Smithsonuoi Intitution) أول من أجرى قياس له من فوق (Johnsos) إلى 1.9997 لانجلي /د (1395 واط /م2)(30) .
وفي قياسات مباشرة وأكثر دقة استخدمت فيها الطائرات والبالونات والأقمار الاصطناعية المحملة بأجهزة قياس متطورة أجريت فوق الغلاف الجوي للأرض تبين أن قمة الثابت الشمسي تعادل 1.94 ± 1.5%لانجلي/د (1353 ± 1.5% واط/م2)وقد تبنت عام 1971 كل من وكالة ±ناسا (NASA ) واللجنة الأمريكية لفحص المواد(American Society for Testing Materials )هذه القيمة (25 ,32 , 33) ومازلت متبناة من معظم الباحثين في العالم, مع ذلك, أعاد العالم فروهليش (Frohlich )عام 1977 فحص لقياسات التي استخدمت في تحديد هذه القيمة للثابت الشمسي وتحليلها, وأدخل في تحليله قياسات أجبرت بواسطة القمرين الاصطناعيين نيمبوس ( Nimbus) ومارينر (Marinar)ونتيجة لذلك اقترح أن تكون قيمة الثابت الشمسي 1.968± 1.5 (1373 ±1.5 واط/م2) (34,25).واستناداً إلى ما تقدم يمكن أن نعرف الثابت الشمسي بأنه "مقدار الطاقة الشمسية الإشعاعية (التشمس) الواصل إلى واحدة المساحة (1سم2) من سطح يتعامد مع الأشعة الشمسية, يقع عند قمة الغلاف الجوي, أو عند سطح الأرض بافتراض عدم وجود الغلاف الجوي, خلال واحدة الزمن (1 دقيقة) عند البعد الوسطي بين الأرض والشمس (149.6 ×10 6 كم) ويعادل 1.94 لانجلي/د (حريرة/سم2د)أو 1353 واط/م2.
1.49× r2 π

4π r2

وباستخدام الثابت الشمسي, يمكننا حساب كمية التشمس (الطاقة الشمسية الإشعاعية) الكلية, الواصلة إلى قمة الغلاف الجوي باعتبار أن مقطع سطح الأرض المعرض للأشعة الشمسية بشكل دائرة, ويتقسم مقدار التشمس الواصل إلى هذه الدائرة على مساحة سطح الكرة الأرضية نحصل على متوسط ما تتلقاه أو ما تستشعه واحدة المساحة (1سم2) من سطح الأرض خلال واحدة الزمن (1د), وذلك كما يلي:
I = = 0.485

هنا : r = نصف قطر الأرض
r2 π= مساحة مقطع الأرض المعرض للتشمس
4π r2 = مساحة الكرة الأرضية
اعتقدت بعض الدراسات فيما مضى أن قيمة الثابت الشمسي تتعرض لتغيرات دورية تتراوح بين ± 0.5 – 2% تتبع نشاط البقع الشمسية ودورتها كل 11 سنة ، فمن هذه الدراسات ما اقترح وجود علاقة عكسية بين مقدار الثابت الشمسي وعدد البقع الشمسية ، إذ انه يزداد مع قلتها ويتناقص مع ازدياد عددها ، وبعضها الأخر اقترح عكس ذلك وقال بوجود علاقة طردية بينهما ، إذ انه يزداد مع ازدياد عددها . ولكن بينت الدراسات اللاحقة فيما بعد عدم وجود أي علاقة بين المقدار الثابت الشمسي ودورة البقع الشمسية (8ص25) .
وبسبب قوة حقولها المغناطيسية ، وما يصاحبها من كميات كبيرة من الأشعة فوق البنفسجية ( ) ينحصر تأثير البقع الشمسية في الأشعة فوق البنفسجية المتطرفة (EUV) التي تقع أطوالها عن 0.2مايكرو متر ، وهذه لا تحمل طاقة حرارية ، وبذلك فان أكثر 99% من أمواج الطاقة الشمسية الإشعاعية يقع بين 0.2-1000 مايكرو متر ولا تتأثر بالبقع الشمسية (9ص38).وبذلك يمكن اعتبار الطاقة الشمسية الإشعاعية ثابتة المقدار (25ص7) .
وختمت منظمة الأرصاد الجوية العالمية (MWO) هذا الموضوع بإعلانها " بأن للبقع الشمسية دورات منتظمة تقريباً تحصل كل 11-22 سنة ، ولكن لا يوجد دليل حاسم على أن لهذه البقع الشمسية ودورانها تأثير في مقدار الطاقة الشمسية الإشعاعية الواصلة إلى الأرض (أرصاد) . بالإضافة إلى ذلك تجدر ملاحظة أن التغيرات المقترحة في مقدار الثابت الشمسي ( ± 1 – 2%) لا تتجاوز مقدار الأخطاء المحتملة في عمليات القياس لذلك وفي ضوء ما تركته الدراسات الأخيرة يمكننا اعتبار قيمة الثابت الشمسي ثابتاً إلى أن تظهر قياسات موثوقة في المستقبل تقترح خلاف ذلك : 80:


شكرا جزيلا لك فانا احتاج هذا البحث كثيرا تعليم_الجزائر:d

شكرا لك جزيلا لك تعليم_الجزائر


شكرا لك جزيلا لك تعليم_الجزائر

عفواااااااااااااااا
وان شاء الله اكون اكون قد افدتكم

التصنيفات
علــوم وتقنيــات Sciences Technique

برج خليفة يسخّن 140 ألف لتر مياه يومياً بالطاقة الشمسية

تعليم_الجزائر
‏‏كشفت شركة «إعمار» العقارية، مطور برج خليفة، عن أن البرج الذي يعد أطول ناطحة سحاب في العالم، يعمل على الاستفادة من مصادر الطاقة الشمسية، لتلبية معظم متطلبات سكانه من المياه الساخنة.
وأوضحت في بيان صدر أمس، أن «البرج يستخدم ألواح الطاقة الشمسية لتسخين 140 ألف لتر من المياه يومياً، ليتم توزيعها على الوحدات السكنية والتجارية ضمن البرج»، مؤكداً أن «تقنية تسخين المياه بالطاقة الشمسية، تسهم في توفير نحو 3200 كيلوواط من الكهرباء يومياً، أو 690 ميغاواط ساعة سنوياً».

وقال العضو المنتدب لشركة «إعمار» العقارية في الدولة، أحمد المطروشي، إن «مبادرة الطاقة الحرارية في برج خليفة، تعكس مدى التزام (إعمار) بدعم أهداف التنمية المستدامة، التي تسعى حكومة دبي إلى تحقيقها».

وأضاف أن «مبادرات الحد من استهلاك الطاقة، لاسيما من خلال استخدام الموارد المتجددة، تعد خطوة مهمة بالنسبة لعمليات التطوير المستدام»، لافتاً إلى أن «برج خليفة ومن خلال الاستفادة من الطاقة الشمسية، يرسي أنموذجاً يقتدى به في مجال مشروعات التطوير الحضري التي تستفيد بأفضل صورة ممكنة من تقنيات الطاقة المتوافقة مع شروط السلامة البيئية».

من جانبه، قال جون أوين من شركة (SOLE UAE) للأنظمة الشمسية، التي ركبت وشغلت نظام التسخين بالطاقة الشمسية، إن «برج خليفة يمثل فرصة استثنائية للاستفادة من مصادر الطاقة الشمسية، لتلبية احتياجات سكان البرج من المياه الساخنة»، مشيراً إلى أن «هذه التقنية توفر مزايا مهمة، منها خفض تكاليف استهلاك الطاقة للبرج ولمزود الخدمات الحكومية، إضافة إلى الحد من مستويات التلوث، ما يترك أثراً بيئياً إيجابياً».

وتعمل الألواح الشمسية في برج خليفة على تجميع الطاقة الشمسية، بدلاً من تقنيات توليد الكهرباء باستخدام النظم الـ«فوتوفولتية». وتقع الألواح على مبنى المكاتب الملحق بالبرج، ويبلغ عددها 378 لوحاً مساحة كل منها 2.7 متر مربع، بإمكانها تسخين 140 ألف لتر خلال سبع ساعات فقط من التعرض للأشعة الشمسية خلال النهار.

كما يستفيد برج خليفة من العديد من الإجراءات التي يجري اتباعها للحد من هدر موارد الطاقة والمياه، حيث يتم تجميع الماء المتكثف من أنظمة التكييف في البرج، لتبريد مياه الشرب التي توفرها «هيئة كهرباء ومياه دبي». ويتم بعد ذلك تجميع الماء المتكثف في خزان كبير لاستخدامه في عمليات ري الحدائق والمسطحات الخضراء المحيطة بالبرج. وسيوفر النظام عند تشغيله نحو 15 مليون غالون من المياه سنوياً.المصدر :دبي – الامارات اليوم


التصنيفات
العلوم الهندسية

السخانات والطبخات الشمسية

تعليم_الجزائرتعليم_الجزائرتعليم_الجزائرتعليم_الجزائر

السخانات والطبخات الشمسية
السخانات الشمسية

تتركب السخانات الشمسية بصفة عامة من سطح امتصاص الأشعة الشمسية وقنوات سريان وسيط التسخين وعوازل حرارية لمنع تسرب الحرارة المكتسبة في وسيط التسخين ألى الوسط المحيط . وسوف نتحدث عن هذه المكونات باختصار شديد فيما يلي :
1- سطح الامتصاص :
يصنع سطح الامتصاص في الغالب من معدن مطلي بألوان داكنة وذلك لزيادة معدل امتصاص حيث تتميز الألوان الداكنة بمعدل عال الامتصاص الأشعة الشمسية يصل إلى 98% ولكن يعاب على الألوان الداكنة قابليتها الشديدة لفقد الحرارة بطريقة الإشعاع حيث يصل ذلك المعدل إلى 90% بعبارة أخرى فإن السطح الماص الداكن قادر على امتصاص ما نسبته 98% من الطاقة الساقطة عليه ولكنه سيعيد إشعاع ما نسبته 90% من الطاقة المكتسبة لتصبح الاستفادة من جزء صغير فقط من الطاقة الشمسية الساقطة على السخان وستضيع النسبة الكبرى سدي من أجل ذلك تستخدم أنواع خاصة من الطلاء ذات معدل امتصاص عالي ومعدل إشعاع منخفض وتسمي مثل هذه الطلاءات بالطلاءات الانتقائية (Selective Coatings ) ومن أمثلة هذه الطلاءات أكاسيد الكروم والكوبالت .
2- قنوات سريان وسيط التسخين :
تصنع هذه القنوات عادة من معادن مثل النحاس والفولاذ أو من المطاط وهي تختلف من تطبيق إلى آخر باختلاف نوع الوسيط وكذلك باختلاف مادة سطح الامتصاص ، فهناك قنوات مستطيلة ذات مساحات كبيرة ( 10x 15 سنتيمترات ) لتسخين الهواء . وهناك قنوات دائرية ذات أقطار صغيرة ( أنابيب أقطار بحدود 1 سنتيمتر) لتسخين السوائل .
3- العازل الحراري :
عندما ترتفع درجة الحرارة داخل السخانات بالمقارنة بالجو المحيط بها يصبح هناك إمكانية لفقد هذه الحرارة .بالتوصيل وذلك عن طريق جوانب السخان والجهة السفلية منه ، وبالحمل ، والإشعاع عن طريق الغلاف الزجاجي ، وعليه يمكن الاستعانة بمواد وأساليب خاصة للحد من هذه الفواقد حسب نوعية الفقد وذلك على النحو التالي : –
الفقد بالتوصيل : ويمكن الحد منه بإحاطة جوانب وأسفل الماص وأنابيب التسخين بمواد خاصة ذات توصيلية حرارية متدينة متدنية مثل الصوف الزجاجي الألياف الزجاجية والبولي ستيرين .
الفقد بالحمل : ويمكن الحد منه بسحب الهواء الموجود بين الأغطية الزجاجية أو يوضع أنابيب التسخين مع السطح الماص دخل أنابيب زجاجية مفرغة من الهواء .
الفقد الإشعاع : ويمكن الحد منه باستخدام أغلفة زجاجية منفذة للأشعة القصيرة من الشمس وفي نفس الوقت معتمة بحيث تمنع انعكاس الأشعة ذات الموجات الطويلة الصادرة من السطح الماص .
آلية عمل السخانات
تتم آلية عمل السخانات بأن يمتص السطح الماص أشعة الشمس الساقطة فترتفع درجة حرارته ، يتبع ذلك ارتفاع في درجة حرارة المائع المار في أنابيب التسخين والتبسيط طريقة عمل السخانات الشمسية سيتم التطرق إلى ثلاثة أمور أساس هي:
* آلية التسخين ، * والسريان داخل السخان ، * وآلية الدفع .
1- آلية التسخين
عند ما تسقط الأشعة المباشرة أو غير المباشرة على السطح الماص فإن درجة حرارته ترتفع مقارنة بدرجة حرارة المائع المار في الأنابيب فيحدث فرق في درجة الحرارة ينتج عنه انتقال الحرارة العالية ( فيما بين الأنابيب ) إلى مناطق سريان المائع ذات الحرارة المنخفضة وبالتالي ترتفع درجة حرارة المائع بين أجزاء من الدرجة إلى عشرات الدرجات المئوية تبعاً لمقدار الإشعاع الشمسي ومعدل السريان داخل أنابيب التسخين .
2- السريان داخل السخان
يدخل المائع البارد نسبياً إلى أنبوب التوزيع في أسفل السخان ( السخانات ذات السريان المتوازي ) ومن هذا الأنبوب يتوزع المائع على أنابيب موازية صاعدة وذات أقطار صغيرة ومن ثم يجمع في أنبوب التجميع الرئيس في أعلى السخان حيث يتم دفع المائع الحار نسبياً إلى خارج السخان كما تم توضيحه فشكل (2) .
أما في حالة السريان المتصل فيدخل المائع إلى أنبوب التسخين الذي يغطي أغلب مساحة السطح الماص – بسبب أنه مصنع بشكل متعرج – فيتحرك الماء يميناً وشمالاً في اتجاه تصاعدي حتى يخرج من أعلى السخان بدون أن يكون هناك أي تفريغ للمائع أو تغيير في الأقطار كما هو موضح في الشكل (2) .
3- آلية الدفع
وهي الوسيلة التي يتم بواسطتها نقل المائع الساخن من السخان إلى الخزان ونقل المائع البارد من الخزان إلى السخان وتحريك المائع داخل السخان . وتنقسم آلية الدفع إلى قسمين هما :
* النظام الطبيعي ، * والنظام القسري .
النظام الطبيعي :
يمتاز نظام السريان الطبيعي ببساطته ورخص تكاليفه ، فهو يعتمد على المبدأ الفيزيائي الحراري القائل بأن أي ارتفاع في درجة حرارة المائع يتبعه انخفاض في كثافته ، ولتطبيق هذا المبدأ في أنظمة التسخين يجب أن يكون أدنى مستوى في الخزان يوازي أو يعلو على أعلى مستوى في السخان ، فعند دخول المائع إلى السخان بدرجة حرارة معينة فإنه يمتص الحرارة من السطح الماص لترتفع درجة حرارته كما ذكر آنفاً ، ويتبع ذلك انخفاض في لكثافة ، أي أن وزن المائع بالنسبة لوحدة الحجم سيقل وبالتالي فإن وحدة حجميه من المائع داخل السخان ستكون أخف من الوحدة الحجميه عند نفس المستوى خارج السخان ( داخل الأنبوب الذي يصل مدخل السخان بالخزان ) وينتج عن هذا الفرق استمرار صعود المائع داخل السخان باكتسابه للحرارة ودخول المائع البارد القادم من الخزان . وبالطبع سيكون هناك وسيلة لمنع انعكاس اتجاه الدورة في الليل أو عند انعدام الإشعاع الشمسي لأن انعكاس الاتجاه يعني زيادة في المعدل الفقد الحراري من نظام التسخين .
نظام السريان القسري :
نظراً الصعوبة تركيب الخزانات فوق مستوى السخانات لكونها خزانات مركزية ( أي أن كل وحدة سكنية أو صناعية بها خزان واحد لتجميع الموائع ذات درجة الحرارة العالية لتقليل الفواقد الحرارية ) وذلك لاعتبارات الوزن ( وللاعتبارات الجمالية أيضاً ) فإن المبدأ الذي يقوم عليه السريان الطبيعي سيختل وبالتالي يستعان بمضخة تقوم بتدوير المائع بين الخزان والسخان خلالفترات توفير الإشعاع الشمسي . وحتى لا تستمر الدورة في الليل عند انخفاض أو انعدام الإشعاع الشمسي يضاف محبس يقوم باستشعار حرارة الخزن وآخر باستشعار حرارة المائع الخارج من السخان ووحدة تحكم تفاضلية مهمتها إيقاف المضخة عندما تكون حرارة الخزان بمقدار يتجاوز الفقد في أنابيب التوصيل بين الخزان والسخان .

الطباخات الشمسية
لقد كان استخدام حرارة الشمس المباشرة من أهم الحلول التي طرحت لاستعمالها طاقة للطهي ، وذلك لقلة تكاليفها ووفرتها وسهولة الحصول عليها ، وقد أدي ذلك إلى تصميم وتطوير الطباخات الشمسية ، ويعد هذا الاستخدام من أبسط استخدامات الطاقة الشمسية خاصة في المجتمعات التي تتوفر فيها هذه الطاقة مثل المملكة العربية السعودية وغيرها من البلدان التي حباها الله بنعمة الشمس المشرقة في أغلب الأوقات .

الأساس العلمي للطبخ الشمسي
يعتمد الأساس العملي للطبخ الشمسي على الاستفادة من مبدأ الانحباس الحراري الناجم عن سقوط الإشعاع الشمسي وانعكاس داخل صندوق معزول من جميع جوانبه بعازل حراري عدا الجانب الأعلى المواجه للشمس فيغطى بلوح من الزجاج أو البلاستيك الشفاف ، كما يتم طلاء أسطحه الداخلية بلون داكن غير لامع ، لكي يقوم بامتصاص أكبر قدر ممكن من الحرارة اعتماداً على نظرية بلانك للأجسام الداكنة .
عند سقوط أشعة الشمس على السطح الزجاجي فإن الموجات القصيرة تنفذ إلى داخل الصندوق أما الموجات الطويلة فإن جزء كبير منها ينعكس إلى الخارج وبما أن الموجات الطويلة ليست ذات طاقة عالية مقارنة بالموجات القصيرة فإن الفاقد بالانعكاس يعد ضئيلاً . وبذلك فإن الأشعة الممتصة بوساطة السطح الداكن تتحول إلى طاقة حرارية ترفع درجة الحرارة داخل الصندوق . يساعد وجود العازل الحراري للصندوق على احتفاظه بقدر كبير من الطاقة . أما الغطاء الزجاجي ، فالبرعم من أنه يساعد على فقد جزء من الطاقة إلى الخارج عن طريق الانكسار إلا أنه يعمل على انعكاس الطاقة إلى داخل الصندوق ( الانحباس الحراري ) ، وكمثال على هذه الظاهرة في حياتنا اليومية نجد أن درجة الحرارة داخل السيارة المعروضة للشمس أعلى منها خارجها ، وذلك لان حرارة الشمس عندما تنفذ مخترقة زجاج السيارة فإنها تنحبس في الداخل عن طريق الانعكاس.
الطباخ الشمسي البسيط
يتكون الطباخ الشمسي البسيط من صندوق معزول عزلاً جيداً من جميع وجوهه الخمسة ويغطى وجهه السادس – المواجه للشمس – بلوح من الزجاج شكل (1)
يوضع وعاء الطهي وما فيه من طعام داخل الصندوق وعند تعريضه لأشعة الشمس تبدأ درجة حرارته في الارتفاع ، وتبعا لذلك تأخذ درجة حرارة الوعاء في الارتفاع حتى تصل إلى درجة الطهي المناسبة لنوع الطعام الموجود في الوعاء ومما يجدر ذكره أن درجة الحرارة في الوعاء تكون دائماً اكبر من درجة الحرارة على جدران الصندوق وذلك بسبب ظاهرة الانحباس الحراري . وتشير البيانات الموضحة في شكل (1) إلى أن درجة حرارة الجزء الأعلى من الوعاء أكبر من درجة حرارة الجزء الأوسط والأسفل .
يختلف الوقت اللازم لإنضاج الطعام تبعاً لنوعه ، فمثلاً يحتاج إنضاج لأرز إلى حدود الساعتين واللحم إلى ثلاث ساعات ، أما قطع اللحم الكبيرة وأنواع المرق والحبوب فقد تستغرق ست ساعات وبين الجدول (1) أزمنة تقريبية الأنواع مختلفة من الطعام . يمكن التحكم إلى حد ما بدرجات الحرارة في الطباخات الشمسية فعندما نريد الحصول درجة الحرارة القصوى فإنه يجب وضع الطباخ في موجهة الشمس تماما ، أما عند ما نريد الحصول على درجات حرارة أقل ، وذلك للمحافظة على درجات حرارة أقل وذلك للمحافظة على سخونة الطعام فقط ، فإنه يجب وضع الطباخ بشكل منحرف عن مجال الشمسي وبالتالي لا تسقط الأشعة عمودية على الطباخ فتنخفض درجة حرارته.
يشترط عند استخدام هذا النوع من الطباخات أن تكون الشمس عمودية على الوجه العلوي الشفاف من الطباخ الشمسي ، ويكون ذلك عادة وسط النهار ، وللتغلب على القصور تم تطوير عدة أنواع من الطباخات الشمسية البسيطة منها ما يلي

تعليم_الجزائر

الطباخ ذو المرآة الوحدة
توضح الصورة (1 ) طباخ شمسي ذو مرا ة واحدة تتيح له العمل دون الاعتماد على الزاوية التي تسقط بها أشعة اشمس وليس بالضرورة أن تكون الأشعة عمودية ، ولكن يجب فقط أن تنعكس أشعتها من المرأة إلى صندوق الطباخ.

تعليم_الجزائر

وقد زودت المرأة برفع يمكن بوساطته تغيير زاوية ميل المرأة مع تغير فصول السنة حتى يتم عكس الأشعة الشمسية في كل الأوقات إلى الصندوق ، أي أن هناك متابعة فصلية سواء كان في الشتاء أو في الربيع أو في الصيف أو في الخريف . وقد زود الطباخ كذلك بجهاز يمكنه من متابعة الشمس أثناء اليوم الواحد وذلك بالدوران حول محوره الرأسي لكي يستقبل الشمس مع حركتها الدائبة في السماء ، يعاب على هذا النوع من الطباخات الشمسية ضرورة وقوف الشخص الذي يقوم بتحريك المرآة ، أو من يتولى الطهي والخروج عدة مرات لمتابعة الشمس مما يمثل عبئاً ثقيلاً في استخدام هذا النظام.

الطباخ ذو المرايا الثلاث
تبين الصورة (2) طباخ شمسي ذو ثلاث مرايا يتم ضبطها لاستقبال أشعة الشمس من الشروق إلى الغروب ، وبذلك يتم تقريبا متابعة الشمس طوال النهار دون الحاجة إلى تعديل وضع الطباخ نفسه ولكي تعطي المرايا أفضل النتائج فإن الأمر يحتاج – في البداية –إلى دراسات ميدانية لتحديد أنسب الأوضاع ، حيث لا يوجد طرق حسابية ( نظرية ) يمكن تطبيقها ، كما يجب مراعاة اختلاف الأوضاع من فصل إلى فصل إلى آخر .
ومع أن هذا التصميم حل إحدى المشاكل المهمة في الطباخات الشمسية البسيطة وهي متابعة الشمس ، إلا انه لم يستطيع توفير درجات الحرارة العالية اللازمة لإنضاج أنواع معينة من الطعام ، ولم يحل مشكلة تعرض المستخدم لحرارة الشمس .


التصنيفات
العلوم الهندسية

برج مائي يعمل بالطاقة الشمسية


برازيليا: تعتزم مدينة ريو دي جانيرو البرازيلية إنشاء برج مائي يعمل بالطاقة الشمسية على ارتفاع 150 متر، وذلك فى إطار استعدادها للاحتفال بدورة الألعاب الأولمبية الصيفية عام 2022.

تعليم_الجزائر

ويتميز البرج الذي قدمت مقترحاً بإنشائه إحدي شركات التصميم الهندسي في مدينة زيورخ السويسرية بإمكانيات رائعة، حيث يعمل خلال النهار وأثناء فترات سطوع الشمس كمولد للطاقة الشمسية لتغذية احتياجات المدينة والقرى الأولمبية من الكهرباء،على أن يتم استغلال الطاقة الزائدة لضخ مياه البحر إلى أعلى البرج.
وعندما تغيب الشمس يتم إطلاق هذه المياه المخزنة لتصنع شلالات رائعة تقوم بتحريك توربينات تولد الطاقة اللازمة لتشغيل البرج وإنارة شوارع المدينة، وذلك وفقاً لما أورده موقع “أخبار مصر” الإلكتروني.
ويبلغ ارتفاع هذا البرج إلى 150 متراً، وسيحتوي بداخله على مطعم وأماكن للجلوس والمشاهدة خلف الشلال، الذي أوضحت الشركة المصممة أنه يمكن تشغيله نهاراً لإعطاء معلم مميز للمدينة أثناء الدورة، وسيحتوي البرج على منصة لمحبي لعبة القفز بالحبال على ارتفاع 90.5 متر.


التصنيفات
الفيزياء الموجية والضوء

النظارات الشمسية

في فصل الصيف يكثر الناس من استخدام النظارات الشمسية والطبية الملونة، والملفت للانتباه أن استخدام هذه النظارات يكون ذاتيا وتلقائيا دون إجبار على ذلك، كما أن استعمالها ليس مقصورا على أعمار معينة، بل تشمل جميع الأعمار، وإن كانت شائعة بين الشباب والمسنين أكثر من الأطفال، وفي هذه الأيام نرى أنواعا كثيرة من النظارات الشمسية، والتي تختلف في الشكل واللون والطراز، بحيث لا تحجب أشعة الشمس القوية عن العين فقط، بل وتعطي جاذبية أكثر وتزيد الوجه جمالا.

العين و الألوان

ترى العين جزءا صغيرا من الطيف الشمسي، ويسمى بالطيف المرئي، ويتكون من الألوان السبعة بدءا باللون البنفسجي فالنيلي فالأزرق فالأخضر فالأصفر فالبرتقالي فالأحمر على التوالي. هذه الألوان يُعبّر عن طول موجاتها (ل) بوحدة قياس طولية صغيرة تسمى النانومتر ( يساوي واحد على مليون من المليمتر) حيث تبدأ أطوال الموجات للون البنفسجي ل =380نانومترا، وتنتهي بالأكثر طولا للون الأحمر عند ل= 780 نانوميتر، وتختلف حساسية العين لرؤية هذه الألوان حيث تصل حساسيتها إلى أكبر قيمة للون الأخضر وتقل كلما اتجهنا نحو البنفسجي أو الأحمر.
لذلك نجد أن الأطباء ينصحون الناس بالراحة في الريف حيث الخضرة تحيط بهم من كل مكان، مما يجعل العين تتعرض لأقل إجهاد ممكن وبالتالي تكون أكثر استرخاء.
والأشعة التي لها تردد +(ت) أكبر من تردد اللون البنفسجي أو طول موجي أقل من 380 نانوميتر. تسمى بالموجات فوق البنفسجية، والتي لها تردد أقل من تردد اللون الأحمر أو طول موجي أكبر من 780 نانوميتر تسمى بالموجات تحت الحمراء.
وحيث أن المنطقة المرئية للعين تنقسم إلى الألوان السبعة، فإن الأطياف فوق البنفسجية وتحت الحمراء تنقسم إلى ثلاث مناطق حسب المعايير الدولية.
وكثير من النظارات الشمسية تهتم بالشكل والمظهر واللون والطراز الذي يرضي ويشبع رغبة ونفسية الأشخاص أكثر من الاهتمام بحماية العين من الأشعة غير المرغوب فيها ونسبة نفوذها بالقياس إلى الأشعة المرئية، ولقد أوضحت الأبحاث في السنوات الأخيرة، أن النظارات الشمسية والطبية الملونة جميعها، سواء كانت رخيصة الثمن أو غالية الثمن ينفذ منها جزء كبير من الأشعة فوق البنفسجية، وتحت الحمراء لطيف أشعة الشمس، بينما تحجب كثيرا من الأشعة المرئية، لهذا فإن العين التي تتعرض فترة طويلة لأشعة الشمس النافذة من النظارات تصاب بالضرر، وخاصة إذا كانت نسبة الأشعة المرئية النافذة أقل من 80%من الأشعة الكلية الساقطة على العين.

الضرر الكيميائي و الضرر الحراري
إن الضرر الناتج عن أشعة الشمس على العين إما أن يكون كيميائيا أو حراريا، ومن دراسة نوعية الضرر يمكننا ربطه بطبيعة تكوين طيف أشعة الشمس حولنا، وطاقة الأشعة التي تنفذ من خلال النظارة، ثم خلال أجزاء العين حتى تصل إلى الجزء الحساس للرؤية وهو الشبكية، ونوعية التأثير المتبادل فيما بينها، كما تؤخذ في الاعتبار نوعية النظارة الشمسية أو الطبية الملونة التي تستخدم لتقليل كمية الضوء الساقط على العين، ويعتمد الضرر بالتالي على مدى اختلاف حساسية أجزاء العين لهذه الأشعة الشمسية، وأخيرا على نوعية الضرر الناتج إذا كان مؤقتا أو مزمنا.
الضرر الحراري لأشعة الشمس على العين يتم فقط، إذا نظرنا بصورة مباشرة ولفترة زمنية طويلة، أو حتى لفترة قصيرة لقرص الشمس مباشرة ولكن، باستخدام نظارة مكبرة أو تلسكوب رؤية، وفي الحالتين تعمل قرنية العين وعدستها على تركيز الطاقة الحرارية للأشعة تحت الحمراء الساقطة من أشعة الشمس على شبكية العين، وتضاعفها آلاف المرات مما يسبب ضررا بالغا، قد يأخذ شكل عمى مؤقت، ويماثل ذلك تماما جمع أشعة الشمس بعدسة محدبة على ورقة مما يؤدي لإحراقها، وأكثر الأشخاص تعرضا لهذا الضرر الحراري هم الباحثون في محطات الأرصاد الشمسية.
وحقيقة الأمر أن الضرر الحراري عادة يسبقه ضرر كيميائي، نتيجة تركيز الضوء المرئي والأشعة فوق البنفسجية، أما إذا زادت نسبة الأشعة تحت الحمراء فإن الضرر الكيميائي يقل، ويصبح الضرر الحراري هو السائد، علمنا إذن أن تأثير الأشعة تحت الحمراء على العين هو تأثير حراري، وعندما تنفذ هذه الأشعة من النظارات، وبنسبة كبيرة، فإن أجزاء العين تمتصها بنسب متفاوته، وتسبب ارتفاعا في درجة حرارة أجزاء العين، خاصة القرنية، والقزحية، ويظهر ذلك في شكل ألم شديد واحمرار في العين.
إن العصب الحسي الذي ينتهي عند القرنية والقزحية حساس جدا لأي ارتفاع بسيط في درجة حرارة العين، ويزداد الألم والضرر إذا ارتفعت درجة حرارة العين إلى 47درجة مئوية، حيث يسبب تعتيما مؤقتا لعدسة العين حتى ولو كان التعرض لفترات زمنية قليلة.

عمى الجليد
هناك ضرر آخر يسمى عمى الجليد، وهذا يحدث عندما تنظر عين الإنسان للجليد لفترة طويلة، حيث إن سطح الجليد يعكس أكثر ما يكون الأشعة فوق البنفسجية لطيف الشمس، وتفسير ذلك أن أكثر الموجات فوق البنفسجية ضررا على العين تلك التي لها طول موجي يتراوح ما بين 305-320نانوميتر، حيث أنها أكثر نفاذية عبر جدار القرنية من باقي الموجات فوق البنفسجية وتسبب ضررا كيميائيا يظهر على شكل تعتيم لشفافية السائل المائي للعين والعدسة البلورية لها.
ويعتمد هذا الضرر على فترة التعرض التي يمكن أن تكون ما بين عدة دقائق إلى ثماني ساعات حسب طبيعة تكوين خلايا العين لكل إنسان.
وعندما يسقط ضوء شديد على العين، فإن بؤبؤ العين يضيق كي يحدد كمية الضوء المناسبة للسقوط على الأجزاء الداخلية للعين، تماما مثلما نفعل بآلة التصوير( الكاميرا)، عند أخذ صورة تحت الضوء الشديد، لكن ذلك لا ينطبق على القرنية التي لا يحميها من أشعة الشمس إلا إغلاق الجفون أو تضييقها، مثلما يفعل رجال الإسكيمو لتفادي الأشعة فوق البنفسجية المنعكسة من سطح الجليد عند سقوطها على العين وعلى أجزائها الداخلية.

الفيض الضوئي النسبي

إذا اعتبرنا الفيض الضوئي الساقط على أجزاء العين هو حاصل ضرب كمية الضوء الساقطة عموديا مضروبا في مساحة بؤبؤ العين، ورمزنا بالرمز (ف) للنسبة بين فيض الضوء الساقط على العين باستخدام النظارة، والفيض بدون استخدام النظارة، فإننا نجد أن النظارة تكون أداة جيدة لحماية العين إذا كانت هذه النسبة(ف) أقل من واحد صحيح، أما إذا كانت النسبة أكبر من واحد صحيح، فإن النظارة في هذه الحالة تكون ضارة للعين.
في النظارات المثالية تكون هذه النسبة (ف) تساوي صفرا في المناطق فوق البنفسجية وتحت الحمراء لضوء الشمس. لكن ذلك لا يحدث حتى لأجود أنواع النظارات الشمسية.

حماية العين
عندما تظهر الشمس ساطعة وقت الظهيرة، والسماء صافية تماما من الغيوم والسحب، تكون شدة إضاءة الشمس كبيرة في المناطق الحارة أو على شواطئ البحار أو فوق الأسطح العاكسة لأشعة الشمس أو في مناطق باردة مغطاة بالثلوج، ويلزمنا نظام وقائي كي نقلل من شدة أشعة الشمس الساقطة على أعينينا.
فإذا استخدمنا نظارات شمسية لفترة طويلة فإنها تقلل كمية الموجات المرئية أكثر من تقليلها للموجات فوق البنفسجية وتحت الحمراء، وهذا بالتالي يؤذي العين ويسبب لها ضررا لسببين:
أولا: تزايد فتحة بؤبؤ العين كي يزيد من كمية الضوء المرئي المناسب للرؤية على الشبكية.
ثانيا: يتبع ذلك مع زيادة زمن التعرض أن تكون جرعة الموجات فوق البنفسجية وتحت الحمراء على أجزاء العين كبيرة واكثر من 20% من الضوء الساقط على أجزائها.
إذن نحن أمام خيارين، وهما النظر إلى الشمس من خلال نظارة شمسية تحجب كثيرا من الضوء المرئي، وقليلا من الأشعة فوق البنفسجية وتحت الحمراء، أو أن ننظر إلى ما حولنا دون استخدام النظارة الشمسية حتى ولو كان الضوء شديدا.
في الحالتين فإن الأشعة فوق البنفسجية وتحت الحمراء سوف تسبب ضررا للعين، لكن في الحالة الثانية يكون الضرر أقل لأن العين تكيف نفسها كي تحدد كمية الضوء الساقطة على أجزائها الداخلية، فمثلا تضيق الجفون، ويضيق بؤبؤ العين، كذلك يمكننا الاستدارة عن المناطق المشمسة إلى مناطق الظل. لهذا فإننا ننصح بما يلي:
1- عدم الثقة في أن النظارات الشمسية تحمي العين تماما من أشعة الشمس، ولهذا يجب تقليل استخدامها بقدر الإمكان وخاصة إذا كان ضوء الشمس ليس شديدا.
2- عدم الاهتمام بالمظهر الخارجي والألوان والطراز والسعر للنظارة الشمسية قبل الاهتمام بمقدار نفاذيتها لطيف الشمس والحفاظ على نسبة نفاذية 80% أو أكثر للمنطقة المرئية بالنسبة لباقي طيف الشمس الواقع على العين.
3- اختيار نسبة الفيض الضوئي النسبي للنظارات الشمسية إن أمكن وخاصة في المناطق فوق البنفسجية، واختيار النظارة التي لها نسبة فيض أقل من واحد صحيح.
4- إذا كان وضع الشمس بزاوية قدرها ستون درجة أو أكثر عن وضع التعامد في الظهيرة، فإنه ينصح بعدم استخدام النظارات الشمسية وذلك لتقليل الأضرار الناشئة من الأشعة تحت الحمراء وفوق البنفسجية على أجزاء العين


التصنيفات
العلوم الكهربائية

محطات الطاقة الشمسية الحرارية لتحلية المياه

السلام عليكم ورحمة والله تعالى وبركاته
محطات الطاقة الشمسية الحرارية لتحلية المياه
Solar Thermal Desalination Plants

حيث ان هذه المحطات لاتختلف عن محطات الطاقة الحرارية لتحلية المياه ..
وقع بين يدي موضوع شامل مفيد عن ذلك أحببت نقله ..
والله الموفق..
وإليكم الموضوع .

في هذا الموضوع سوف ألخص بشكل مبسط جداً أشهر طريقتين لتحلية مياه البحر وأكثرها شيوعاً ألا وهما:

1- التقطير الومضي المتعدد المراحل – Multi-Stage Flash Distillation

2- التناضح العكسي – Reverse Osmosis

أولاً: طريقة التقطير الومضي المتعدد المراحل

إن عملية تقطير الماء المالح هي عملية بدائية و سهلة للغاية فهي ببساطة عملية غلي الماء المالح ومن ثم تكثيف بخاره الذى يصبح بعدها ماء مقطر. فإذا ضخينا ماء البحر بواسطة مضخة إلى سخان كبير ورفعنا درجة الحرارة فإن الماء يبدأ بالتبخر. ثم نأخذ هذا البخار ونمرره في انبوب يمر في وسط ماء البحر البارد نسبياً قبل دخول ماء البحر هذا إلى السخان فإن البخار يتكثف ويتحول إلى ماء مقطر وهكذا تتم عملية التقطير ببساطة.

لزيادة كفاءة وكمية المياه المقطرة استغل العلماء حقيقة علمية أخرى ألا وهي أن درجة غليان الماء تتناسب تناسباً طردياً مع الضغط الواقع على الماء، ويغلي الماء عند درجة 100 مئوية تحت الضغط الجوى العادى و كلما انخفض الضغط انخفضت درجة غليان الماء.

فإذا رجعنا إلى مثالنا السابق وأخذنا ماء البحر المتبقي في السخان ووضعناه في وعاء آخر تحت ضغط منخفض فإن هذا الماء سيغلى تحت ضغط منخفض معين بدون تسخين الماء مرة أخرى وسنحصل على بخار ومن ثم ماء مقطر من هذا الوعاء.

فإذا كررنا هذه العملية من إدخال الماء المالح في أوعية متتالية وجعلنا الضغط في كل وعاء أقل من الضغط في الوعاء السابق بما يكفي لغلي الماء في الوعاء حصلنا على مايسمى بالتقطير الومضي المتعدد المراحل والرسمة التالية توضح أساسيات هذه الطريقة:

تعليم_الجزائر

لدينا في هذه الصورة عدة خزانات لتقطير ماء البحر موصلة ببعضها البعض على التوالي. يدخل ماء البحر في آخر خزان في آخر مرحلة ومن ثم إلى المرحلة التى قبلها وهكذا حتى يصل ماء البحر إلى مكان إدخال بخار التسخين حيث تتم عملية التبادل الحراري وتسخين ماء البحر إلى حوالى 116 درجة مئوية. يدخل ماء البحر بعد ذلك في خزان المرحلة الأولى ويبدأ تخفيض الضغط حتى يغلي ومن ثم يتصاعد البخارحتى يصل إلى السطح المبرد بواسطة ماء البحر الداخل فيتكثف ويسقط الماء المقطرويتجمع في الوعاء المخصص له. يخرج بعد ذلك ماء البحر من الرحلة الأولى والذي زادت نسبة تركيز الملح به بعد تبخر نسبة منه ويدخل إلى خزان المرحلة الثانية حيث ينخفض الضغط فيه أكثر بواسطة عملية شفط الهواء مما يؤدى إلى غليان الماء وتبخره وصعود البخار إلى الأعلى حيث يتكثف ويتحول إلى ماء مقطرفي عملية مكررة في كل حيث يكون الضغط في كل مرحلة أقل من التى قبلهاحتى يخرج في النهاية محلول ملحي عالي نسبة التركيز لايمكن معالجته أكثر.

في محطات تحلية مياه البحر عندنا في الكويت والتى تعمل على طريقة التقطير الومضي المتعدد المراحل يتم خلط ناتج الماء المقطر مع مياه الآبار قليلة الملوحة لإنتاج مياه عذبة صالحة للشرب.

إذن يتبين لنا مما سبق أن طريقة التقطير الومضي المتعدد المراحل تحتاج إلى شيئين مهمين لكي تعمل ألا وهما الطاقة الحرارية اللازمة لإنتاج بخار التسخين وتحتاج أيضاً إلى الطاقة الكهربائية اللازمة لتشغيل مضخات المياه وأجهزة التحكم وكل المعدات اللازمة لخلط ومعالجة المياه

لنرجع الآن إلى رسمة محطة الطاقة الشمسية الحرارية مع محطة تحلية مياه البحر الموجودة لنرى كيف يمكن لهذه المحطة الكهربائية الشمسية تحلية مياه البحر كناتج ثانوي

تعليم_الجزائر
إضغط على الرسمة لتكبيرها
الرسمة أعلاه تبين طريقة عمل محطة الطاقة الشمسية أثناء النهار حيث تعكس مرايا الحقل الشمسي أشعة الشمس على البرج الثابت ومن ثم تتم عملية تحويل الماء إلى بخار محمص وكذلك يتم تسخين الملح المذاب وتخزينه لاستعمال حرارته فيما بعد.

بعد ذلك يندفع البخار المحمص إلى المولد التوربيني ويتسبب في دورانه مما يولد الكهرباء. بعدها يخرج البخار من التوربينة حيث يدخل في المبادل الحراري لمحطة التقطير مما يرفع درجة حرارة ماء البحر وفي نفس الوقت يتكثف البخار ويعاد تدويره ليسخن مرة أخرى ويتجه إلى التوربينة وهكذا. بعد رفع درجة حرارة ماء البحر تبدأ محطة تحلية الماء عملها بطريقة التقطير الومضي المتعدد المراحل والتى سبق شرحها.

تعليم_الجزائر
إضغط على الرسمة لتكبيرها
الرسمة أعلاه تبين عملية تشغيل المحطة الشمسية الحرارية أثناء الليل والاستعاضة عن حرارة الشمس بالحرارة المخزنة في الملح المذاب والذي يعمل على تحويل الماء إلى بخار ومن ثم تحميصه بواسطة خزانات الملح المذاب الموجودة في أعلى الصورة. وتتم باقي عمليات المحطة من إنتاج الكهرباء وتقطير مياه البحر كما ذكرنا سابقاً.

تعليم_الجزائرإ
ضغط على الرسمة لتكبيرها
الرسمة أعلاه تبين طريقة عملية تشغيل المحطة الشمسية الحرارية في حالة رداءة الطقس مثل وجود غيوم أوعواصف أوغبار فيتم في مثل هذه الحالات استخدام وقود ثانوي مثل الغاز أو مشتقات النفط أو الهيدروجين وذلك لتشغيل المحطة بالكامل حتى تتحسن الظروف الجوية

تبين لنا الآن إمكانية تصميم محطة الطاقة الشمسية لإنتاج الكهرباء والماء تعمل على مدار 24 ساعة في اليوم و 365 يوماً في السنة

والآن لنشرح الطريقة الثانية لتحلية ماء البحر

ثانياً: طريقة التناضح العكسي

تعليم_الجزائر
إضغط على الرسمة لتكبيرها
إن نظرية التناضح العكسي سهلة جداً للفهم والتطبيق العملي فلو نظرنا إلى الجهة اليسرى من الرسمة أعلاه نجد خزانين متجاورين ويوجد بينهما غشاء شبه نفاذ به مسامات صغيرة جداً تسمح بمرور جزيئات الماء النقي وتمنع مرور الأملاح بنسبة تصل لأكثر من 99% وكذلك تمنع الملوثات والشوائب وحتى الجراثيم والبكتيريا.

ففي الجهة اليسرى من الرسمة أعلاه نجد أن أحد الخزانين به ماء البحر المالح والثاني به ماء عذب نقي، فإذا ترك الخزانين تحت ضغط متساوى بينهما وليكن الضغط الجوي العادي تبدأ عملية التناضح الطبيعية بعبور الماء عبر الغشاء من الجهة الأقل ملوحة إلى الجهة الأكثر ملوحة ونرى ذلك بوضوح في ارتفاع مستوى الماء في خزان الماء المالح وهذا بسبب عبور الماء العذب لجهة الماء المالح.

والآن نأتي إلى الجزء المهم من هذه العملية، فبالنظر إلى الجهة اليمنى من الرسمة أعلاه، نجد أنه لو قمنا بوضع ضغط عالي على ماء البحر المالح نجد أن اتجاه مرور الماء ينعكس و يحدث من جهة ماء البحر المالح إلى جهة الماء العذب بعد أن تخلص من الأملاح والأوساخ وأصبح ماءً عذباً نقياً.

وبهذه الطريقة يمكننا الحصول على كميات ضخمة من المياه العذبة من ماء البحر ولا نحتاج إلى تسخين الماء وغليه كما هو الحال في طريقة التقطير الومضي المتعدد المراحل و إنما نحتاج فقط إلى الكهرباء فقط لتشغيل مضخات الضغط العالي وأجهزة التحكم الأخرى. والكهرباء تأتي من المحطة الشمسية الحرارية كما ذكرت سابقاً
لفهم كيفية عمل محطة الطاقة الشمسية ( concentrating solar power (CSP) ) يجب أولا فهم كيفية عمل محطات توليد القوى الكهربائية التقليدية .

في المحطة التقليدية توجد سخانات ضخمة (Boilers ) حيث يتم حرق الغاز أو مشتقات النفط لتسخين الماء إلى درجات حرارة عالية جدا , يتحول الماء بعدها إلى بخار يندفع بقوة إلي توربينات مؤديا إلى دورانها و ينتج عن هذا الدوران طاقة كهربائية تنقل عن طريق شبكات التوزيع الكهربائية إلي مختلف قطاعات الدولة من مصانع و منازل الخ…

تعليم_الجزائر

محطة الطاقة الشمسية الحرارية مع نظام الملح المذاب للتخزين
تعليم_الجزائر

محطة الطاقة الشمسية الحرارية مع محطة تحلية ماء

في محطة الطاقة الشمسية الحرارية يتم تسخين الماء في السخانات بواسطة أشعة الشمس ولكن قبل أن تتم عملية التسخين هذه يجب أولا تركيز أشعة الشمس تركيزا شديدا و هذا ما يحصل في الحقل الشمسي.
تعليم_الجزائر
الحقل الشمسي
  1. إن الحقل الشمسي عبارة عن مئات أو آلاف المرايا العاكسة ( Heliostats Mirrors) المصفوفة في خطوط شبه دائرية. وكل مرآة عاكسة مثبتة علي قاعدة تشبه تماما قاعدة دش الستلايت المتحرك, حيث تقوم كل هذه المرايا بعكس و تركيز أشعة الشمس علي برج ثابت يصل ارتفاعه إلى عشرات الأمتار. و تتحرك كل هذه المرايا مع حركة الشمس بحيث تتبعها بدقة ليتم عكس أشعة الشمس بأعلى تركيز ممكن علي البرج الثابت في عملية مشابهة لحركة زهرة عباد الشمس. و تتم في داخل البرج الثابت عملية تسخين الماء و تحويله إلى البخار اللازم في عملية توليد الطاقة الكهربائية التقليدية.

    السؤال المهم في هذه العملية هو: ما هي مساحة الأرض التي تحتاجها محطة الطاقة الشمسية الحرارية؟

    بعد تجارب الدول الصناعية مثل الولايات المتحدة و ألمانيا و أسبانيا، يقول العلماء و الخبراء في هذا المجال أنه بالتكنولوجيا المتوفرة حاليا و التي تتطور بسرعة يمكن توليد جيجا وات واحدة بمساحة قدرها 33 كم مربع وأنه يمكن لمساحة قدرها 1% من الصحراء الكبرى إنتاج كل احتياجات العالم من الطاقة. و من المعلوم أيضا أن قدرة محطات القوة الكهربائية في الكويت حاليا تعادل تقريبا عشرة جيجا وات. و هذا يعني إننا نحتاج إلى 330 كم مربع من الأرض أي تقريبا 2% من المساحة الكلية لدولة الكويت و البالغة 17818 كم مربع لإنتاج كل احتياجاتنا الحالية من الكهرباء.

    و مع تقدم التكنولوجيا في هذا المجال أمكن خفض هذه المساحة. فقد استطاعت الشركات المصنعة للمرايا العاكسة و الأبراج الثابتة تقليص المساحة إلي تقريبا 15 كم مربع لكل جيجا وات واحدة مما يعني 150 كم مربع فقط أي في أقل من 1% من مساحة الكويت لتغطية إحتياجاتنا من الطاقة.

    تعليم_الجزائر

    تعليم_الجزائر

    قد يتساءل البعض منا هل من الممكن توليد الطاقة الكهربائية من المحطات الشمسية في الليل و أثناء موسم الغبار والأمطار؟

    الجواب نعم.

    من الممكن إنتاج الكهرباء من هذه المحطات في الليل و بكفاءة عالية و ذلك بتخزين الفائض الحراري الكبير من الطاقة الشمسية في مادة ملحية تسمي الملح المذاب (Molten Salt ) الذي يمكنه تخزين الطاقة الحرارية في خزانات و من ثم يتم إعادة استخدامها في الليل في عملية إنتاج البخار عن طريق عملية التبادل الحراري. كما يمكن إضافة الغاز أو مشتقات النفط كوقود ثانوي في حالة هبوب العواصف و الغبار و الأمطار و تسمي هذه العملية ب ( Hybrid System).


التصنيفات
العلوم الكهربائية

الطاقة الشمسية واستخداماتها


تعليم_الجزائر

تعليم_الجزائر
الطاقة الشمسية واستخداماتها

تعليم_الجزائر

خلق الله الشمس والقمر كآيات دالة على كمال قدرته وعظم سلطانه وجعل شعاع الشمس مصدراً للضياء على الأرض وجعل الشعاع المعكوس من سطح القمر نوراً . قال الله تعالى في كتابه العزيز ( هو الذي جعل الشمس ضياء والقمر نوراً وقدره منازل لتعلموا عدد السنين والحساب ما خلق الله ذلك إلا بالحق يفصل الآيات لقوم يعلمون ) سورة يونس الآية(5) فالشمس تجري في الفضاء الخارجي بحساب دقيق حيث يقول الله سبحانه وتعالى في سورة الرحمن ( الشمس والقمر بحسبان ) الآية(5) . أي أن مدار الأرض حول الشمس محدد وبشكل دقيق ، وآي اختلاف في مسار الأرض سيؤدي إلى تغيرات مفاجئة في درجة حرارتها وبنيتها وغلافها الجوي ، وقد تحدث كوارث إلى حد لآيكن عندها بقاء الحياة فقدرة الله تعالى وحدها جعلت الشمس الحارقة رحمة ودفئاً ومصدراً للطاقة حيث تبلغ درجة حرارة مركزها حوالي (8ْ-40ْ) x 10 درجة مطلقة ( كفن ) ثم تتدرج درجة حرارتها في الانخفاض حتى تصل عند السطح إلى 5762ْ مطلقة ( كفن ) .

استخدام الطاقة الشمسية

استفاد الإنسان منذ القدم من طاقة الإشعاع الشمسي مباشرة في تطبيقات عديدة كتجفيف المحاصيل الزراعية وتدفئة المنازل كما استخدمها في مجالات أخرى وردت في كتب العلوم التاريخية فقد أحرق أرخميدس الأسطول الحربي الرماني في حرب عام 212 ق م عن طريق تركيز الإشعاع الشمسي على سفن الأعداء بواسطة المئات من الدروع المعدنية . وفي العصر البابلي كانت نساء الكهنة يستعملن آية ذهبية مصقولة كا لماريا لتركيز الإشعاع الشمسي للحصول على النار .
كما قام علماء أمثال تشرنهوس وسويز ولافوازييه وموتشوت وأريكسون وهاردنج وغيرهم باستخدام الطاقة الشمسية في صهر المواد وطهي الطعام وتوليد بخار الماء وتقطير الماء وتسخين الهواء . كما أنشئت في مطلع القرن الميلادي الحالي أول محطة عالمية للري بوساطة الطاقة الشمسية كانت تعمل لمدة خمس ساعات في اليوم وذلك في المعادي قرب القاهرة . لقد حاول الإنسان منذ فترة بعيدة الاستفادة من الطاقة الشمسية واستغلالها ولكن بقدر قليل ومحدود ومع التطور الكبير في التقنية والتقدم العلمي الذي وصل إليه الإنسان فتحت آفاقا علمية جديدة في ميدان استغلال الطاقة الشمسية .

بالإضافة لما ذكر تمتاز الطاقة الشمسية بالمقارنة مع مصادر الطاقة الأخرى بما يلي :-
1. إن التقنية المستعملة فيها تبقى بسيطة نسبياً وغير معقدة بالمقارنة مع التقنية المستخدمة في مصادر الطاقة الأخرى .
2. توفير عامل الأمان البيئي حيث أن الطاقة الشمسية هي طاقة نظيفة لا تلوث الجو وتترك فضلات مما يكسبها وضعاً خاصا في هذا المجال وخاصة في القرن القادم.

تحويل الطاقة الشمسية

يمكن تحويل الطاقة الشمسية إلى طاقة كهربائية وطاقة حرارية من خلال آليتي التحويل الكهروضوئية والتحويل الحراري للطاقة الشمسية ، ويقصد بالتحويل الكهروضوئية تحويل الإشعاع الشمسي أو الضوئي مباشرة إلى طاقة كهربائية بوساطة الخلايا الشمسية ( الكهروضوئية ) ، وكما هو معلوم هناك بعض المواد التي تقوم بعملية التحويل الكهروضوئية تدعى اشتباه الموصلات كالسيليكون والجرمانيوم وغيرها . وقد تم اكتشاف هذه الظاهرة من قبل بعض علماء الفيزياء في أواخر القرن التاسع عشر الميلادي حيث وجدوا أن الضوء يستطيع تحرير الإلكترونات من بعض المعادن كما عرفوا أن الضوء الأزرق له قدرة أكبر من الضوء الأصفر على تحرير الإلكترونات وهكذا . وقد نال العالم اينشتاين جائزة نوبل في عام 1921م لاستطاعته تفسير هذه الظاهرة .

وقد تم تصنيع نماذج كثيرة من الخلايا الشمسية تستطيع إنتاج الكهرباء بصورة علمية وتتميز الخلايا الشمسية بأنها لا تشمل أجزاء أو قطع متحركة ، وهي لا تستهلك وقوداً ولا تلوث الجو وحياتها طويلة ولا تتطلب إلا القليل من الصيانة . ويتحقق أفضل استخدام لهذه التقنية تحت تطبيقات وحدة الإشعاع الشمسي ( وحدة شمسية ) أي بدون مركزات أو عدسات ضوئية ولذا يمكن تثبيتها على أسطح المباني ليستفاد منه في إنتاج الكهرباء وتقدر عادة كفاءتها بحوالي 20% أما الباقي فيمكن الاستفادة منه في توفير الحرارة للتدفئة وتسخين المياه . كما تستخدم الخلايا الشمسية في تشغيل نظام الاتصالات المختلفة وفي إنارة الطرق والمنشآت وفي ضخ المياه وغيرها .

أما التحويل الحراري للطاقة الشمسية فيعتمد على تحويل الإشعاع الشمسي إلى طاقة حرارية عن طريق المجمعات ( الأطباق ) الشمسية والمواد الحرارية .فإذا تعرض جسم داكن للون ومعزول إلى الإشعاع الشمسي فإنه يمتص لإشعاع وترتفع درجة حرارته . يستفاد من هذه الحرارة في التدفئة والتبريد وتسخين المياه وتوليد الكهرباء وغيرها . وتعد تطبيقات السخانات الشمسية هي الأكثر انتشاراً في مجال التحويل الحراري للطاقة الشمسية . يلي ذلك من حيث الأهمية المجففات الشمسية التي يكثر استخدامها في تجفيف بعض المحاصيل الزراعية مثل التمور وغيرها كذلك يمكن الاستفادة من الطاقة الحرارية في طبخ الطعام ، حيث أن هناك أبحاث تجري في هذا المجال لإنتاج معدات للطهي تعمل داخل المنزل بدلا من تكبد مشقة الجلوس تحت أشعة الشمس أثناء الطهي .

ورغم أن الطاقة الشمسية قد أخذت تتبوأ مكان هامة ضمن البدائل المتعلقة بالطاقة المتجددة ، إلا أن مدى الاستفادة منها يرتبط بوجود أشعة الشمس طيلة وقت الاستخدام أسوة بالطاقة التقليدية. وعليه يبدو أن المطلوب من تقنيات بعد تقنية وتطوير التحويل الكهربائي والحراري للطاقة الشمسية هو تقنية تخزين تلك الطاقة للاستفادة منها أثناء فترة احتجاب الإشعاع الشمسي . وهناك عدة طرق تقنية لتخزين الطاقة الشمسية تشمل التخزين الحراري الكهربائي والميكانيكي والكيميائي والمغناطيسي . وتعد بحوث تخزين الطاقة الشمسية من أهم مجالات التطوير اللازمة في تطبيقات الطاقة الشمسية وانتشارها على مدى واسع ، حيث أن الطاقة الشمسية رغم أنها متوفرة إلا نها ليست في متناول اليد وليست مجانية بالمعني المفهوم . فسعرها الحقيقي عبارة عن المعدات المستخدمة لتحويلها من طاقة كهرومغناطيسية إلى طاقة كهربائية أو حرارية . وكذلك تخزينها إذا دعت الضرورة . ورغم أن هذه التكاليف حالياً تفوق تكلفة إنتاج الطاقة التقليدية إلا أنها لا تعطي صورة كافية عن مستقبلها بسبب أنها أخذة في الانخفاض المتواصل بفضل البحوث الجارية والمستقبلية .

تعليم_الجزائر

منقول وبتصرف
خالد عويس


التصنيفات
العلوم الكهربائية

أول طائرة تعمل بالطاقة الشمسية في العالم

ماجدة تامر/وكالات

تمكنت أول طائرة تعمل بالطاقة الشمسية في العالم بوزن سيارة صغيرة، وتطير بجناحين يشبهان جناحي طائرة السوبر جامبو من إتمام رحلة طيرانها التجريبية عبر مسافة قصيرة بين نقطتين

تعليم_الجزائر
وذكرت وكالة الأنباء (سانا) أن نجاح التجربة التي أجريت من أحد المطارات بسويسرا دفع مصمميها بيرترام بيكار مع مساعده أندريه بورشبرغ في التفكير بتطوير مشروعهما والانتقال به إلى مرحلة استخدام الطاقة الشمسية لتمكين مثل هذه الطائرات ولكن بأحجام أكبر وبعدد أكثر من الركاب على متنها في غضون عامين من أن تجوب العالم

وتم تثبيت خلايا شمسية على جناحي الطائرة تزود أربعة محركات بما يلزمها من طاقة، وقد استجابت الطائرة عند إقلاعها لما تستجيب له الطائرات العادية من قواعد الطيران المنضبطة

وكان فريق العمل بدأ بإجراء اختبارات للطائرة منذ كانون الأول الماضي، ضمن شروط ألا ترتفع الطائرة عن الأرض أكثر من 60 سنتيمترا، وألا تتحرك أكثر من 300 متر

هذا وستجرى تجربة أخرى لرحلة ليلية في وقت لاحق من العام الجاري، ومن ثم سيتم بناء طائرة جديدة بناءا على نتائج هذه التجارب

وأوضح فريق العمل أنه “مع طائرة بمثل هذا الحجم الكبير والوزن الخفيف ولم تقم برحلة طيران من قبل فإن أداء الطائرة يظل في طور الاستكشاف ”

وعمل الفريق على المشروع طيلة السنوات السبع الماضية، والتي انتهت بنجاح كما قال شهود عيان الذين أكدوا يسر وسلاسة عملية الإقلاع والهبوط على حد سواء

ومن المقرر أن تقلع الطائرة في رحلتها المنتظرة حول العالم في عام 2022 بعد أن يقوم قائدا الطائرة برحلة عبر المحيط الأطلسي أولا