التصنيفات
الفيزياء الكهربية والمغناطيسية

القنبلة الكهرومغناطيسية

تخيل انك فجأة اضطررت للعيش بدون كهرباء لمدة يوم فإنك سوف تتدبر امورك بانتظار عودة التيار الكهربي، ولكن اذا ما استمر انقطاع التيار الكهربي فإنك في هذه الحالة سوف تضطر للعيش حياة اشبه بتلك التي عاشها الانسان في العصور القديمة بدون كهرباء معتمداً فقط على المواد الأولية فلا يمكنك تشغيل التلفزيون أو الراديو أو الكمبيوتر أو التلفون حتى جهاز التدفئة أو مكواة الملابس أو الآلة الحاسبة أو الثلاجة والغسالة حتى السيارة ووسائل النقل الحديثة. ان هذا الوضع هو الذي تفعله القنبلة الكهرومغناطيسية التي يؤدي تفجيرها إلى تعطيل وافساد كافة الدوائر الإلكترونية لجميع الأجهزة الكهربية التي تعمل من خلال الدوائر الكهربية المبنية من مواد اشباه الموصلات Semiconductors. واستخدام هذه القنابل في المعارك الحربية يؤدي إلى جعل الخصم يعتمد في معركته على الأسلحة التقليدية مما يسهل محاصرته وهزيمته بسهولة. وهنا سوف نقوم بإلقاء الضوء على هذه القنبلة التي هددت الولايات المتحدة باستخدامها في العراق.

فكرة العمل:ــ
تعتمد فكرة عمل القنبلة الكهرومغناطيسية أو سلاح النبضة الكهرومعناطيسية من خلال دوائر كهربية تعمل على انتاج مجال كهرومغناطيسي كبير.
والمجال الكهرومعناطيسي هو ليس بالشيء الجديد فالشعاع الكهرومغناطيسي هو اشعة الراديو التي يبث عليها محطات الـ AM والـ FM وهي اشعة اكس واشعة الضوء العادي الذي نرى بواسطته الأشياء.
وهنا يجب ان نعلم ان التيار الكهربي المتردد ينتج مجال مغناطيسي وتغير المجال المغناطيسي ينتج تيار كهربي متردد، وكما يعمل مرسل اشارات الراديو الذي يولد مجال مغناطيسي من خلال مرور تيار كهربي في الدائرة الكهربية فإن هذا المجال المغناطيسي ينتج تيار متردد في دائرة كهربية أخرى وهي دائرة الاستقبال من خلال الانتينا. إن اشارة راديو ضعيفة تنتج تيار كهربي كافي ليمر في الدائرة الكهربية للمستقبل، ولكن زيادة هائلة في شدة اشعة الراديو ستؤدي إلى توليد تيار كهربي كبير. هذا التيار الكهربي كافي ليتداخل في دوائر الأحهزة الإلكترونية ويحرق الدوائر الإلكترونية المتكاملة المبنية من مواد اشباه الموصلات Semiconductors.

ان التقاط اشارات الراديو ذات الشدة العالية يؤدي إلى توليد مجال مغناطيسي كبير يودي بدوره إلى توليد تيار كهربي في أي جسم موصل للكهرباء فمثلاً خطوط التلفون وخطوط نقل الكهرباء والأنابيب المعدنية كلها تعمل مثل الأنتينا ستلتقط هذه التيارات الكهربية على شكل نبضات كهربية عالية الشدة وتنقلها إلى الأجهزة المتصلة بها مثل شبكات الكمبيوتر المتصلة بخطوط الهاتف وعلى الفور سوف تحرق مكوناتها الإلكترونية وتذيب الاسلاك وتفسد البطاريات وتحرق المولدات الكهربية.

والسؤال الآن كيف يمكن انتاج مثل هذه المجالات المغتاطيسية العالية؟؟؟؟

إن فكرة القنبلة الكهرومغناطيسية اصبحت متداولة كثيراً في الأخبار في هذا الوقت ولكن مبدأ عمل هذه القنبلة يعود إلى سنوات خلت من 1960 وحتى 1980. وقد جاءت بدايات التفكير في هذه القنبلة في العام 1958 حين قامت الولايات المتحدة بتجربة القنبلة الهيدروجينية في المحيط الهادي وقد ادت إلى نتائج غير متوقعه حيث ان من اثار تفجير القنبلة الهيدروجينية ادي الى قطع التيار الكهربي عن شوارع مدينة هاواي التي تبعد مئات الأميال عن مكان التفجير كما ان التفجير ادي إلى تخريب معدات الراديو في استراليا.

وقد استنتج العلماء ان الاضطراب الكهربي الذي حدث قد نتج عن ظاهرة كمبتون Compton Effect الذي اكتشفها العالم آرثر كمبتون في 1925. حيث ان هذه الظاهرة تدرس تفاعل الفوتون الضوئي مع الكترونات المادة، فعند اصطدام فوتون كهرومغناطيسي ذو طاقة عالية مثل اشعة جاما الغلاف الجوي المكون من الاكسجين والنيتوجين فإن الكترونات تتحرر من ذرات الاكسجين والنيتروجين، هذه الالكترونات المحررة تتفاعل مع المجال المغناطيسي للكرة الأرضية مما تنتج تيار كهربي متردد مما ينتج مجال مغناطيسي قوي. تكون النتيجة انتاج نبضة كهرومغناطيسية شديدة تنتشر في المواد الموصلة على مساحة واسعة.

وقد خشيت الولايات المتحدة اثناء الحرب الباردة مع الاتحاد السوفيتي ان تقوم روسيا بتفجير قنبلة نووية على ارتفاع شاهق يصل إلى 50 كيلو متر في سماء الولايات المتحدة تعمل نفس الأثر السابق مما يفسد كل الأجهزة الكهربية في الولايات المتحدة.

ولكن هذه المخاوف ما لبثت ان تبددت بعد ان تبين بعد الأبحاث التي قام بها علماء امريكيين ان تأثير هذه القنبلة عملياً يكون فقط على مناطق محددة.

كيف تعمل القنبلة الكهرومغناطيسية ؟؟؟؟

تعد فكرة عمل القنبلة الكهرومغناطيسية من الاسرار الحربية ولم تكشف بعد كيف ومما تتكون ولكن من المحتمل أن تكون فكرة عمل هذه القنابل اشبه بفكرة عمل فرن ميكروويف ذو طاقة عالية جداً واشعة موجه بشكل محدد وعليه فإنها لا تكون قنابل كهرومغناطيسية ولكن اجهزة تولد اشعة كهرومغناطيسية بطاقة عالية جداً وهذه الأجهزة التي تنتج النبضات الكهرومغناطيسية مثبتة على رؤوس صواريخ كروز تطلق على الاهداف من الجو.

تم في سبتمبر 2001 نشر في احد المجلات العلمية Popular Machine مقالاً حول انتاج قنبلة ضغط الفيض المغناطيسي flux compression generator bombs وهذه المقالة كتبها المحلل العسكري Carlo Kopp متوفرة للجميع ولكن لا يمكن انتاج تلك القنبلة من هذا المعلومات فقط اي ان هناك العديد من الاسرار لم تكشف بعد وقد جاء في تلك المقالة
تتكون القنبلة من اسطوانة معدنية armature cylinder محاطة بملف موصل stator winding. تملء الاسطوانة بمواد شديدة الإنفجار ويكون بين الاسطوانة والملف فراغ، ويغطي كلاً من الاسطوانة والملف جدار عازل. يوصل الملف بمصدر تغذية كهربية بواسطة مفتاج كهربي ويتكون مصدر التغذية الكهربية من عدد من المكثفات التي تخزن الطاقة الكهربية.

مراحل تفجير القنبلة الكهرومغناطيسية!!!!

عند اغلاق الدائرة الكهربية بين المكثفات والملف تمر نبضة كهربية عالية تعمل على توليد مجال مغناطيسي عالي داخل الملف stator winding.
يتم اشعال المواد شديدة الأنفجار من خلال دائرة تفريغ كهربي تعمل على انتشار الانفجار كموحة تنتشر داخل الملف stator winding داخل الاسطوانة.
عند انتشار الانفجار داخل الملف يصبح الملف متصلاً مع الاسطوانة التي كانت معزولة وتصبح الاسطوانة والملف دائرة مغلقة تعمل على فصل الملف عن الكثفات الكهربية.

تعمل الدائرة المعلقة التي تنتشر في اتجاه الإنفجار داخل الاسطوانة على توجه المجال المغناطيسي وتحديده لتنتج نبضة مغناطيسية.

الأثار الناجمة عن استخدام القنبلة الكهرومغناطيسية:ــ
يجب ان نعلم ان القنبلة الكهرومغناطيسية لا تعد من اسلحة الدمار الشامل حيث لا تؤثر على الحياة البشرية اذا لم توجه بشكل مباشر على اهداف محددة ولكن تؤثر على الأجهزة وتجعل من الخصم باسلحة تقليدية وتجرده من كل الأجهزة التكنولوجية الحديثة، ويكون وخطرها على حسب شدة هذه القنبلة الكهرومغناطيسية، فإذا كانت شدة النبضة الكهرومغناطيسية منخفضة فإنها تؤدي إلى إيقاف مؤقت لعمل الأجهزة الإلكترونية أما اذا ارتفعت شدة هذه النبضة الكهرومغناطيسية فإنها تدمر كل البيانات المخزنة في الكمبيوترات، أما عند نبضة ذات شدة عالية فإنها تفسد الأجهزة الإلكترونية وتعطلها بصورة دائمة.

في المعارك الحربية تعمل هذه القنبلة على تعطيل المركبات الحربية وقاذفات الصواريخ الأرضية وانظمة الاتصالات وانظمة التوجيه والتحكم واجهزة الرصد والتتبع.


التصنيفات
العلوم الكهربائية

الهندسة النووية و كيف تعمل القنبلة النووية المفاعل النووي

ما هو اليورانيوم الناضب؟

لا يمكن فهم هذه المادة دون فهم أصلها، وهو اليورانيوم الطبيعي الذي يوجد بصفة دائمة وبشكل طبيعي في جميع أشكال الطبيعة من أرض وصخور وبحار ومحيطات، كما يوجد حوالي 90 مايكروجرامًا من اليورانيوم في جسم الإنسان مصدره مياه الشرب والطعام والهواء.. 66% من هذا اليورانيوم يتواجد بالهيكل العظمي، و16% بالكبد، و8% بالكليتين، و10% في باقي أجزاء الجسم.

يتكون اليورانيوم الطبيعي من خليط من ثلاثة نظائر مشعة من اليورانيوم بنسب متفاوتة هي: يورانيوم 238 بنسبة 99.27% (حسب الكتلة)، ويورانيوم 235 بنسبة 0.72%، ويورانيوم 234 بنسبة 0.0054%.

إنتاج واستخدام اليورانيوم الناضب

يستخدم اليورانيوم في محطات الطاقة النووية، والتي تحتاج إلى تخصيب اليورانيوم لتكون نسبة اليورانيوم 235,3% بدلا من 0.72%. ويسمى اليورانيوم المتبقي بعد إزالة الجزء المخصب باليورانيوم الناضب.

يتكون اليورانيوم الناضب من 99.8% يورانيوم 238 , 0.2% يورانيوم 235, 0.0006% يورانيوم 234 . نسبة الإشعاع الصادر من اليورانيوم الناضب هو 60% منها في اليورانيوم الطبيعي.

ينتج اليورانيوم الناضب أيضا عن إعادة تكرير نفايات الوقود النووي، والتي ينتج عنها إضافة يورانيوم 236 في اليورانيوم الناضب، بالإضافة إلى آثار من البلوتونيوم والأمريسيوم والنبتونيوم والتكنيتيوم -99.

زيادة نسبة الإشعاع حسب التقرير بسبب وجود هذه العناصر في اليورانيوم الناضب أقل من 1%. وهذه النسبة ليست لها دلالة واضحة بالنسبة للسمّيّة الكيميائية والإشعاعية لها.. هذا اليورانيوم الناضب هو الذي يستخدم بسبب كثافته العالية، والذي يزيد على كثافة الرصاص مرتين في الأسلحة المصنّعة لاختراق المدرعات، كما يستخدم في صناعة المدرعات نفسها.

تنطلق الطلقات المضادة للمدرعات المدججة باليورانيوم الناضب من إحدى الطائرات بسرعة 3900 طلقة في الدقيقة، والقصف العادي يستمر لمدة ثانيتين أو ثلاثة، وينتج عنه إطلاق ما بين 120- 195 طلقة، (لقد تم إطلاق 30000 طلقة في كوسوفا على حد قول المسئولين في حلف ناتو). هذه الطلقات تغطي مساحة 500 متر مربع تقريبا، وعادة لا تصل سوى 10% من الطلقات إلى الهدف المطلوب.

الطلقات التي لا تضرب أهدافا مدرعة أو لا تصل إلى هدفها؛ عادة ما تظل على حالها، وقد تخترق الأرض إلى مسافة 2-3 أمتار.. أما الطلقات التي تقصف المدرعات؛ فيتحول ما قد يصل إلى 70% من الطلقة إلى رذاذ، ثم تشتعل دقائق اليورانيوم الناضب، هذه الدقائق أقل من 5 مايكرومترات في الحجم، وتنتشر في الجو حسب اتجاه الرياح.

غبار اليورانيوم الناضب أسود اللون، ويعرف الهدف الذي تم قصفه باليورانيوم الناضب بالغبار الأسود المنتشر عليه وحوله، يقول تقرير برنامج البيئة التابع للأمم المتحدة: إن هذا الغبار ينتشر في البيئة تاركًا أثره في الماء والهواء، إلا أنه لا يصيب إلا مساحة 100 متر حول الهدف المقصوف.

الآثار الصحية لليورانيوم الناضب

يتم التعرض لليورانيوم الناضب عن طريق الاستنشاق، أو عن طريق الطعام، أو الماء الملوث، أو عن طريق تعرض الجروح السطحية على الجلد لشيء ملوث، يمتص الجسم أقل من 5% من اليورانيوم الناضب الداخل إليه؛ حيث يتم إخراج الباقي مع البراز، أما عن الجزء الذي يتم امتصاصه فعلا فيتم تنقية الدم من 67% منه عن طريق الكلى في خلال 24 ساعة من الدخول إلى الجسم..

الآثار الصحية الناجمة عن التعرض لليورانيوم الناضب تختلف حسب درجة التعرض، وتكون بسبب التسمم الإشعاعي أو التسمم الكيميائي، وتؤثر بشكل أكبر على الرئتين والكليتين؛ حيث بإمكانه التسبب في السرطان، وإحداث قصور وظيفي في بعض أعضاء الجسم.. فدقائق اليورانيوم المستنشقة مثلا، والتي يتراوح حجمها ما بين 1-10 مايكروجرامات، تحتجز داخل الرئة لتتسبب في حدوث سرطان الرئة في حالة التعرض لكمية كبيرة منه لمدة زمنية طويلة.

تعليم_الجزائر

ان فكرة عمل المولد الكهربي لتوليد الطاقة الكهربية من خلال فهم العلاقة بين المجال المغناطيسي والتيار الكهربي المار في سلك، ووجدنا ان التيار الكهربي يتولد عند دوران ملف من سلك معدني في مجال مغناطيسي قوي وتسمى الملفات التي تدور في المجال المغناطيسي لتوليد التيار الكهربي بالتوربينات، وتكمن المشكلة في ايجاد الطاقة اللازمة لتدوير التوربينات بصورة مستمرة فمثلا يمكن استخدام النفط او الفحم للحصول عى الطاقة الحرارية الكافية لتحويل الماء إلى بخار تحت ضغط عالى عندما يمر هذا البخار على التوربينات يجعلها تدور بسرعة تدفق بخار الماء، كما يمكن استخدام مصادر طبيعية والتي تعرف باسم الطاقة المتجددة مثل استخدام المساقط المائية والشلالات والمراوح الهوائية للحصول على الطاقة اللازمة لتدوير التوربينات. ومن ضمن الوسائل التي اخترعها الانسان لتوفير الطاقة لتدوير التوربيانات استخدام الطاقة النووية، ويصل نسبة محطات توليد الطاقة الكهربية التي تعمل بالطاقة النووية في العالم حوالي 17%، ففي فرنسا مثلا تعتمد بنسبة 75% على المحطات النووية لتوليد الطاقة الكهربية. بينما في الولايات المتحدة الامريكية فإنها تعتمد على المحطات النووية بنسبة لا تزيد عن 15% ويصل عدد المحطات النووية في العالم حسب احصائيات الوكالة الدولية للطاقة الذرية إلى 400 محطة نووية منها 100 في الولايات المتحدة.

تستخدم الطاقة النووية في توليد الحرارة اللازمة من خلال التفاعلات الانشطارية لنواة اليورانيوم المشع وتستخدم هذه الحرارة في تحويل الماء إلى بخار يوجه لتحريك التوربينات التي تحرك ملفات كبيرة في مجال مغناطيسي فتعمل على توليد الطاقة الكهربية.

تعليم_الجزائر

صورة لمحطة توليد طاقة كهربائية باستخدام المفاعل النووية وموضح البرج الاسمنتي الذي تخرج منه الابخرة الناتجة من عملية تبريد اليورانيوم

هل تسائلت عزيزي القارئ كيف يمكن الحصول على الطاقة الكهربية من محطات الطاقة النووية وكيف تعمل هذه المحطات للحصول على الطاقة الكهربية بالرغم من اننا نعرف تماما ان الطاقة النووية استخدمت للتدمير الشامل نتيجة لقوة الانفجار الهائلة التي تحدثها من خلال القنابل النووية ولكن في المقابل يمكن تسخير هذه الطاقة الهائلة من أجل الاستخدامات السلمية والحصول على الطاقة الكهربية التي هي عصب الحياة.

تعليم_الجزائر

في هذا المقال من كيف تعمل الأشياء سوف نقوم بشرح تفصيلي بسيط لفكرة عمل محطات الطاقة النووية على ان تكون عزيزي القارئ قد اطلعت على المقالين السابقين بعنوان كيف يعمل المولد الكهربي الدينامو، وكيف تصدر الاشعاعات النووية.

اساسيات هامة
ماذا تعرف عن اليورانيوم؟
تعليم_الجزائر

تعليم_الجزائر
تعليم_الجزائر
تعليم_الجزائر
يصطدم نيوترون حر في نواة ذرة يورانيوم-235
تمتص نواة اليورانيوم-235 النيوترون وتنشطر مباشرة إلى نواتين
تنطلق ثلاث نيوترونات نتيجة للانشطار وتتحرر طاقة حرارية وتنطلق اشعة جاما

تحدث عملية امتصاص النوترونات والانشطار النووية لليورانيوم-235 بسرعة كبيرة جداً حيث لا تستغرق هذه العملية اكثر من بيكوثانية أي (1×10-12) ثانية. وخلال فترة زمنية صغيرة جداً نحصل على طاقة هائلة تنطلق في صورة حرارة واشعاعات جاما ولعلك تتساءل عزيزي القارئ من اين اتت هذه الطاقة الهائلة؟ ان الاجابة عن هذا يجعلنا نذكر قانون تكافؤ الطاقة والكتلة لاينشتين وهو ان الطاقة تساوي حاصل ضرب الكتلة في مربع سرعة الضوء وبالتالي اي كتلة صغيرة نضربها في مربع سرعة الضوء يؤدي الى طاقة هائلة ويكتب قانون تكافؤ الطاقة والكتلة

E = mc2

والكتلة m التي تتحول الى طاقة في الانشطار النووي لليورانيوم-235 تأتي من ان كتلة النواة الام اكبر من كتلة نواة الذرتين المنشطرتين وبالتالي فرق الكتلة هذا هو مصدر الطافة الهائلة التي تتولد عن الانشطار النووي لليورانيوم-235 والتي تقدر بحوالي 200 مليون الكترون فولت من طاقة تتحرر من كل ذرة يورانيوم-235 وتخيل كم عدد الذرات التي تكون في قطعة من اليورانيوم بحكم كرة تنس ولتصور كم الطاقة الهائل المتحرر من انشطارات في ذرات اليورانيوم في هذا الحجم الصغير فغنه يعادل انفجار 20 مليون لتر من الوقود.
واليورانيوم المستخدم في المفاعل النووي المستخدم للحصول على الطاقة الكهربية مطعم بنسبة لا تزيد عن 3% بذرات اليورانيوم-235 وبالمناسبة اليورانيوم المستخدم في القنبلة النووية يحتوي على نسبة لا تقل عن 90% من اليورانيوم-235.

داخل المفاعل النووي

تعليم_الجزائر

تعليم_الجزائر
صورة لاقراص اليورانيوم والتي تظهر سوداء في الصورة والتي تعرف باسم الوقود النووي

تعليم_الجزائر
حزمة من اليورانيوم المرصوص وبداخله فتحات لادخال مادة التحكم في التفاعلات الانشطارية

تركيب المفاعل النووي
الفكرة الفيزيائية لعمل المفاعل النووي هي واحدة في كل المفاعلات ولكن هناك نظامين مختلفين للتبريد حيث في النظام الاول يستخدم الماء المضغوط الذي يمكن ان ترتفع درجة حرارته إلى مئات الدرجات المئوية قبل ان يتحول الى بخار ويستخدم الماء المضغوطكمصدر للحرارة لتحويل الماء إلى بخار في دائرة ثانوية أخرى منفصلة عن دائرة التبريد بينما في الانواع الاخرى من المفاعلات يتم ماء التبريد الذي ارتفعت درجة حرارته وتحول إلى بخار مباشرة لتحريك التوربينات وهنا تكون دائرة رئيسية واحدة كما هو موضح في المخططات التفصيلة التالية:

تعليم_الجزائر

في الجزء الايسر من مخطط المفاعل النووي نلاحظ الماء المضغوط الذي يستخدم في تبريد اليورانيوم والحرارة الناتج والتي يمتصها الماء المضغوط يفقدها لتحويل الماء إلى بخار يستخدم في تحريك التوربينات وتوليد الحركة المطلوبة لتوليد الطاقة الكهربية. لاحظ ان دائرة التبريد تختلف عن دائرة البخار.
لمشاهدة الصورة بالحركة
اضغط هنا

تعليم_الجزائر

هذا المخطط يوضح فكرة عمل المفاعل النووي المستخدم لتوليد الطاقة الكهربية ولكن هنا نجد ان الماء المستخدم في التبريد هو الذي يتحول إلى بخار ماء لتحريك التوربينات وتوليد الطاقة الكهربية. لاحظ هنا ان دائرة التبريد ودائرة البخار هي دائرة واحدة.

لمشاهدة الصورة بالحركة
اضغط هنا

تعليم_الجزائر

صورة توضح انابيب ضخ البخار المضعوط لتحريك التوربيانت لتوليد الكهرباء
تعليم_الجزائر
التوربينات التي تتحرك بفعل ضغط البخار الموجه عليها
تعليم_الجزائر
وحدة التحكم في المفاعل النووي والمستمر طوال الوقت لتدخل الفنيين في اي لحظة يتطلب الامر ذلك

ما هي مخاطر التي من الممكن ان تنجم عن خلل في المفاعلات النووية؟
إن استخدام المفاعلات النووية لتوليد الطاقة الكهربية تعتبر ميزة كبيرة عن استخدام الفحم لتوليد الحرارة اللازمة الطاقة الكهربية لان الغازات الناتجة عن الاحتراق مثل غازات الكربون والكبريت وغيره من الغازات الناتجة هي غازات سامة وملوثة للبئية وتنتج بكميات كبيرة بالمقارنة بالعادم الناتج عن المفاعلات النووية، وبالرغم من كل هذا الا ان اي خلل قد يحدث في المفاعل النووي قد يسبب كارثة بشرية لا يحمد عقباها مثل كارثة تشورنوبل التي نتج عنها الاف الاطنان من المواد المشعة التي تسربت الى الجو، كما ان الوقود الناتج من المفاعل النووي يعتبر مواد خطرة ويستمر تأثيرها لالاف السنين ولا يمكن التخلص منها بسهولة، كما ان نقل الوقود النووي يعتبر عملية خطرة بالرغم انه لم تحدث اي مشاكل تذكر. ولهذه المخاطر لم يتم الاعتماد على توليد الطاقة الكهربية بواسطة الطاقة النووية بنسبة كبيرة وكما ذكرنا في بداية هذا المقال فإن الاعتماد على الحصول على الكهرباء من الطاقة النووية لم يتجاوز 17%

الموضوع منقول عن موقع تعليم الفيزياء الميكانيكية والكهربائية تعليم_الجزائر