* Broché: 366 pages
* Éditeur : Faculté de Médecine d’Angers
* Langue : Français
* Type du livre: PDF
* Taille: 2 Mo
Voir le Livre sur :
Terafiles.net
http://www.terafiles.net/v-65923.html
العلوم الطبية والبيطرة..
* Broché: 366 pages
* Éditeur : Faculté de Médecine d’Angers
* Langue : Français
* Type du livre: PDF
* Taille: 2 Mo
Voir le Livre sur :
Terafiles.net
http://www.terafiles.net/v-65923.html
001 – Abcès Du Psoas Et Brucellose
002 – Abcès Prostatique A Brucella
003 – Aspects Cliniques, Microbiologiques Et Thérapeutiques de la brucellose étude de 45 cas
004 – Bilharzioses Schistosomoses
005 – Brucellose Chez L’Enfant
006 – Brucellose Humaine
007 – Cours Parasitologie 1
008 – Cours Parasitologie 2
009 – Fiche Brucellose
010 – Iconographie Parasito-Myco 2022-2007
011 – Introduction A La Parasitologie 2022
012 – Investigation En Cas D’Epidémie De Listériose
013 – La Brucellose A L’Aube Du 21e Siècle
014 – La Brucellose Une Autre Cause D’Arthrite Réactionnelle
015 – Les Manifestations Neurologiques Au Cours De La Brucellose
016 – Les Principales Ordonnances En Parasitologie
017 – Listériose Au Cours De La Grossesse
018 – Listériose Et Neurolistériose
019 – Manifestations Articulaires De La Brucellose
020 – Myocardite Restrictive Révélatrice D’Une Brucellose
021 – Nouvelles Approches Diagnostiques Dans La Listériose Humaine
022 – Parasitologie Générale
023 – Polycopie Parasito-Myco 2022-2008
024 – Un Cas De Listériose Révélé Par De Volumineux Abcès Cérébraux
025 – Une Cause Rare De Fièvre Eruptive La Brucellose
Lien De Téléchargement :
[/b]
[url]http://4.bp.blogspot.com/-ICbPv2WKuY0/VOsobwJZKjI/AAAAAAAABA8/tliYAvzdgMY/s1600/lutte%2Bde%2BBVD.bmp[/img]
ou Voir ici
Comme chacun sait le coeur fonctionne comme une pompe.
Lorsque le coeur est relâché (diastole), les oreillettes aspirent le sang venant des veines : les veines pulmonaires pour l’oreillette gauche, les veines caves supérieures et inférieures pour l’oreillette droite. Elles se remplissent de sang, oxygéné pour la gauche, vicié pour la droite.
La contraction du coeur (systole) commence par celles des oreillettes, le sang est chassé dans les ventricules respectifs avec ouverture des valves mitrale (à gauche) et tricuspide (à droite). La contraction atteint (dans la fraction de seconde suivante) les ventricules qui éjectent alors le sang dans l’aorte (à gauche) et le tronc pulmonaire (à droite) avec ouverture des valves correspondantes et fermeture des valves mitrale et tricuspidienne (cela empêche le sang de refouler dans les oreillettes). Ensuite relâchement du coeur avec fermeture des valves aortique et pulmonaire (cela empêche le sang de refouler dans les ventricules et maintient une certaine pression artérielle, c’est le 2e chiffre que vous donne la mesure de votre tension).
On comprend ainsi que toute atteinte d’un de ces éléments va gravement perturber la circulation normale : atteinte d’une des 4 valves (rétrécissement ou au contraire insuffisance de fermeture), malformations (communication entre les 2 oreillettes ou entre les 2 ventricules par exemple), etc…
001 – Antigènes
002 – Bases En Immunologie
003 – Cellules Et Organes Du Système Immunitaire
004 – Complexe Majeur D’Histocompatibilité
005 – Cours Immunologie Fac D’Alger
006 – Diversité Des Immunoglobulines – Mécanismes Génétiques
007 – Examens Immunologiques 2022
008 – IgM
009 – Immunité Acquise Coopération Cellulaire Et Cytotoxicité
010 – Immunité Innée Système Du Complément Et Rôle Du Polynucléaire Neutrophile
011 – Immunité T
012 – Immunoglobuline Monoclonale Et Orientation Diagnostique
013 – Immunologie
014 – Immunologie Pour Le Praticien
015 – Immunomogie – Diabete
016 – Introduction Générale – Immunité Innée
017 – Le Syndrome Des Antiphospholipides (SAPL)
018 – L’Infection A VIH
019 – Pathologies Auto-Immunes Aspects Epidémiologiques
020 – Phase Effectrice De La Réponse Immunitaire Humorale
021 – Physiopathologie De La Polyarthrite Rhumatoide
022 – Physiopathologie De La Sclerose En Plaques
023 – Polyarthrite Rhumatoïde
024 – Polyradiculonévrite Aiguë Inflammatoire
025 – Réactions Inflammatoires Aspects Biologiques Et Cliniques
026 – Sclérose En Plaques
027 – Spondylarthropathies Inflammatoires
028 – Structure Et Fonctions Des Pentraxines
029 – Syndrome Des Anti-Phospholipides
030 – Syndromes Immunoproliferatifs 1
031 – Syndromes Immunoproliferatifs 2
032 – Synthèse Et Structure Des Immunoglobulines
033 – Transplantation 1
034 – Transplantation 2
Lien De Téléchargement :
Le système nerveux et le système endocrinien permettent le maintient de l’homéostasie. Le système endocrinien sécrète des hormones dans le sang, leurs actions est lente mais soutenue dans le temps (cf. cours sur l’endocrinologie). Le système nerveux quant à lui permet la formation d’influx nerveux qui ont une action rapide mais brève, on parle ici de neuromédiateurs qui agissent sur de très courte distance (quelques µm) au niveau des synapses.
Le système nerveux est divisé en deux grandes zones : le système nerveux central (SNC) et le système nerveux périphérique (SNP). Le système nerveux central est constitué de l’encéphale (cerveau) et de la moelle épinière, et le système nerveux périphérique est constitué des ganglions nerveux et des nerfs : 12 paires de nerfs crâniens et 31 paires de nerfs rachidiens.
Le système nerveux a 3 fonctions essentielles :
Toutes les informations de l’organisme affluent vers le SNC à partir de détecteurs sensoriels de différents types.
Le SNP est constitué de deux voies :
Les cellules nerveuses (neurones) sont les unités fonctionnelles du SNC et forment un réseau qui s’étend dans tout l’organisme. Bien qu’elles ne soient pas les plus nombreuses dans le système nerveux, ce sont les plus importantes. Pour indication le système nerveux possède 10% de neurones pour 90% de cellules gliales (leur rôle dans le système nerveux sera énoncé dans la suite du cours).
Ce sont des cellules post-mitotique (pour la majorité, étant hautement spécialisés) et excitable. En effet on sait aujourd’hui que certains neurones peuvent être produits au niveau de l’hippocampe. Leur excitabilité est due à un changement d’état très rapide qui est déterminé par un facteur extérieur. Les cellules nerveuses peuvent modifier leur anatomie et possèdent une grande longévité. Elles sont très sensibles à l’hypoglycémie et à l’hypoxie. En effet elles consomment presque exclusivement du glucose qui leurs est fournit par les cellules gliales. Les neurones sont indépendants les uns des autres, n’établissant que des contacts fonctionnels spécifiques appelés synapses. Ce sont également des cellules sécrétrices particulières qui peuvent avoir comme produit de sécrétion des neuromédiateurs, des neuromodulateurs ainsi que des neurohormones (GnRH).
L’axone : est un prolongement unique, fin, homogène, relativement linéaire et pouvant s’arboriser par la suite au niveau des nœuds de Ranvier. Il prend naissance au niveau d’une expansion conique du corps cellulaire appelée cône d’implantation (ou cône d’émergence) qui est également le lieu d’où partira le potentiel d’action (cf. suite du cours). L’axone peut se diviser en une ou plusieurs collatérales qui se termineront généralement par une arborisation terminale dont chaque extrémité, renflée, établit des contacts synaptiques avec les cellules cibles. Les neurones sont principalement constitués de neurofibrilles et de mitochondries qui fournissent l’énergie nécessaire aux mouvements des messagers intracellulaires et à la libération des vésicules synaptiques au niveau des extrémités axonales, appelées boutons synaptiques. L’axone est également le lieu de transports qui sont soit antérograde (vers les boutons synaptique) soit rétrograde (vers le corps cellulaire). Ce transport continuel représente un flux nécessaire à l’apport des différentes macromolécules tout au long de l’axone ; en effet les axones ne présentent aucunes structures responsables de la synthèse de protéines.
b) La gaine de myéline
Les axones peuvent être recouverts par une gaine de myéline qui correspond à l’enroulement de couches phospholipidiques concentriques de manière discontinue sur l’ensemble de l’axone. En effet ces gaines sont espacées tous les 1 à 2 mm par les nœuds de Ranvier qui sont du coup amyéliniques et d’où peuvent émerger les collatérales de l’axone. Ces gaines sont formées à partir de 2 types cellulaires suivant si l’on se trouve dans le SNC ou le SNP :
Les neurones multipolaires (moteur et sensitif)
De manière fonctionnelle il existe :
Les cellules de la névroglie sont les cellules majoritaires du système nerveux. Elles sont étroitement liées aux neurones, de taille inférieure à ces derniers et ne forment aucune synapse chimique. Contrairement aux neurones, les cellules gliales peuvent se reproduire par mitose. Elles ont différents rôles au sein des tissus nerveux : l’isolement des tissus nerveux (cf. Oligodendrocytes et cellules de Schwann), les fonctions métaboliques (cf. Astrocytes), le soutien structural et une protection immunitaire (cf. Microglie). La macroglie correspond aux astrocytes et aux oligodendrocytes.
Les cellules gliales, toutes situées dans le SNC, sont de différents types :
1) Potentiels et influx nerveux
L’influx nerveux est le potentiel électrique se déplaçant sur l’axone après que le neurone ait été stimulé. L’excitabilité est la capacité à réagir à un stimulus et à le convertir en influx nerveux. La conductivité est la capacité de propagation et de transmission de l’influx nerveux.
La transmission de l’influx nerveux se fait des dendrites jusqu’à l’axone. En effet l’arbre somato-dendritique représente le pôle récepteur du neurone et l’axone (ou collatérales) représente le pôle émetteur du neurone. Attention cela ne veut pas dire que l’axone ne peut pas jouer le rôle de récepteur.
La communication entre neurones se fait grâce :
Les neurones, comme toutes les cellules de l’organisme, sont soumise à une différence de potentiel membranaire (ddp) due aux différences de concentration ioniques de part et d’autre de la membrane. Du côté extracellulaire ce sont surtout les ions Na et Cl- qui sont présents, et du côté intracellulaire ce sont surtout les ions K et les protéines qui sont présents.
On note que les ions K sont ceux qui possèdent la plus grande conductance au sein de la membrane (5 fois plus élevé que les autres ions), il attire donc le potentiel de membrane vers son potentiel d’équilibre (-80 mV) donné par l’équation de Nernst. Le gradient de concentration des ions potassique les pousse à sortir de la cellule, mais l’existence de charge positive dans le milieu extracellulaire créé un gradient électrique de sens contraire au gradient de concentration des ions K . Autrement dit le potentiel de repos est atteint à l’équilibre, lorsque les forces dues au gradient électrique (qui poussent à faire rentrer les ions K dans la cellule) sont égales aux forces dues au gradient de concentration (qui poussent à faire sortir les ions K de la cellule).
On arrive à un équilibre des forces, la différence de potentiel est alors de -70 mV. Elle se maintient même si Na parvient à rentrer dans la cellule, et ceci par régulation des pompes Na /K . On peut faire la remarque que le potentiel de membrane est nul lorsque la concentration en ions chargés négativement est égale à la concentration en ions chargés positivement, et ce dans le milieu intracellulaire et extracellulaire.
b) Le potentiel gradué
Le potentiel gradué est une inversion locale et de courte durée du potentiel membranaire. Il apparaît au niveau des dendrites et des corps cellulaires et est déclenché par une stimulation extérieure à la cellule (inversion locale de la polarité membranaire). Suite à cette stimulation il y a apparition d’un courant électrique local qui se propageant bilatéralement par rapport au point de stimulation et dont l’intensité diminue avec la distance.
Il est dit gradué, car son voltage est proportionnel à l’intensité de la stimulation. Ce potentiel gradué arrivera jusqu’au corps cellulaire et si son voltage est suffisant il y aura formation d’un potentiel d’action.
c) Le potentiel d’action
Le potentiel d’action est une variation transitoire du potentiel membranaire déclenchée suite à une stimulation, formée au niveau du cône d’émergence et dont la propagation est axonique, unidirectionnelle, avec une intensité qui ne diminue pas avec la distance.
La stimulation peut provenir d’un autre neurone, ou de la stimulation d’un récepteur sensitif qui peut être présent à la surface de l’organisme (peau) ou bien même dans l’organisme lui-même (au niveau des organes). Il peut également y avoir des potentiels d’action auto-entretenu, c’est le cas du cœur (cf. cours physiologie du système cardiovasculaire). Si cette stimulation est suffisante, c’est-à-dire si elle dépasse le seuil de déclenchement du neurone, alors il y aura création du potentiel d’action. Attention le seuil n’est pas le même pour tous les neurones.
Dans le cas des neurones amyéliniques, le potentiel d’action possède la même amplitude tout du long ; la dépolarisation en un point induit la dépolarisation du point voisin, la propagation est lente. Il existe une période réfractaire. Le potentiel d’action se déplace en sens unique du cône d’émergence vers les terminaisons.
Dans le cas des neurones myélinisés, il y a création successive des potentiels d’action le long de l’axone ; ceux-ci vont s’éloigner du site d’excitation initiale. La vitesse de transmission dépend du diamètre de la fibre (s’il augmente, la vitesse augmente). La conduction est dite conduction saltatoire (de nœud en nœud) et la propagation est rapide. Après la repolarisation, la membrane demeure inerte un certain temps ; les canaux à Na ne peuvent pas s’ouvrir (période réfractaire). Au niveau des nœuds de Ranvier on met en évidence une grande concentration de canaux sodique voltage dépendant qui sont responsable de la propagation du potentiel d’action.
La synapse correspond au point de connexion fonctionnel existant entre deux neurones. Un millimètre cube de substance grise du cortex peut contenir 5 millions de synapses. Les synapses peuvent être électriques ou chimiques :
Les synapses chimiques, quant à elles, sont présentent uniquement dans le tissu nerveux et ce sont elles que nous allons expliquer dans la suite de ce cours. Suivant les cellules impliquées on aura des :
Il peut être inhibiteur, on parle de potentiel post-synaptique inhibiteur (PPSI). Le PPSI est créé par l’entré d’ion chlorure Cl- ou la sortie d’ion potassique K qui permettent une hyperpolarisation diminuant l’excitabilité neuronale.
Le potentiel d’action est soumis à la loi du tout ou rien, c’est-à-dire que quelque soit le courant créé par le stimulus, s’il arrive jusqu’au seuil du neurone il permettra une dépolarisation complète, mais s’il n’arrive pas jusqu’au seuil, il ne se passera rien du tout :
synapse.
La période réfractaire est la période durant laquelle l’axone ne pourra plus propager de potentiel d’action après un premier potentiel d’action. Il y a présence de deux types de périodes réfractaires suivant l’avancé du premier potentiel d’action.