التصنيفات
الفيزياء الموجية والضوء

الاشعه القادمة Terahertz

الاشعه القادمهTerahertzيضع عليها العلماء الكثير من الامال والتطلعات وتعد بتكنو لوجياء جديده للقرن الواحد والعشرين نظرا للمزياء الفريده التي تتمتع بها فما هذه الاشعه؟
تنقسم الاشعه الكهرو مغناطيسيه الي اشعه مؤينه وغير مؤينه ,والاشعه المؤينه هي التي تكون طاقتها قادرة علي انتزاع الالكترونات من الذره مماينتج عنها سلبيات وخطر سواء علي العاملين عليها او العامه المعرضه بشكل مباشر
لكن في الطيف الكهرو مغناطيسي مجموعة تردد بقيت مجهوله لمدة طويله انها مجموع التردد (تيرا هيرتز)الواقعه بين موجات الميكروويف والاشعه تحت الاحمراء البعيده ويكون ترددها قليل وبالتالي طاقتها غي كا فية لانتزاع الكترونات الذره وتتراوح ذبذباتها بين 0,1Tو 10T

التصنيفات
الفيزياء الموجية والضوء

الفرق بين خصائص الضوء وبين الاشعة السينية

عندما تصادف أشعة الضوء سطحاً صلباً فإنها ترتد وهذا الارتداد يسمى انعكاساً؛ فالانعكاس هو:

” ارتداد الضوء إلى الجهة التي صدر منها عندما يصادف سطحاً صلباً”

وهنا يجب تعريف المصطلحات التالية:

1- السطح العاكس: هو السطح الذي تسقط عليه الأشعة.

2- العمود المقام على السطح العاكس: هو مستقيم يقام عمودياً على السطح العاكس في نقطة الانعكاس.

3- الشعاع الساقط: الشعاع الذي يسقط على السطح العاكس.

4- زاوية السقوط: الزاوية بين الشعاع الساقط والعمود المقام على السطح (1q)

5- الشعاع المنعكس: الشعاع المنعكس عن السطح العاكس.

6- زاوية الانعكاس: الزاوية بين الشعاع المنعكس والعمود المقام على السطح(2q).

قانونا الانعكاس:
القانون الأول :
الشعاع الساقط والشعاع المنعكس والعمود المقام على السطح العاكس من نقطة السقوط تقع جميعها في مستوى واحد عمودي على السطح العاكس.
القانون الثاني :
زاوية السقوط = زاوية الإنعكاس
qه1 =qه2
كما أن طول الموجة الساقطة يساوي طول الموجة المنعكسة لأنهما
ينتشران في وسط واحد لذا فإن سرعتهما واحدة وبناء عليه تتساوى الموجتان في التردد.

تكون الأخيلة في المرايا:
1- المرايا المستوية:
للتعرف على صفات الخيال المتكون باستخدام مرآة مستوية للجسم (أب).
أ- نسقط الشعاع الأول عمودياً على السطح العاكس فينعكس على نفسه.
ب- نسقط الشعاع الثاني بزاوية سقوط معينة وينعكس الشعاع بنفس الزاوية فنلاحظ امتداده داخل المرآة.
ج- عند نقطة التقاء الشعاعين يكِّون رأس الجسم الموضوع أمام المرآة.
– قس المسافة بين : الجسم ، المرآة والخيال ، المرآة.
صفات الخيال المتكون:
1- طول الجسم = طول الخيال
2- بعد الجسم عن المرآة = بعد الخيال عن المرآة
3- الخيال مقلوب جانبياً
4- يكون الخيال وهمياً داخل المرآة أي لا يمكن استقباله على حاجز
المرايا الكروية:
يكون السطح العاكس في المرايا الكروية جزءاً من سطح كرة جوفاء. ويطلق على المرآة الكروية محدبة إذا كان السطح العاكس هو السطح الخارجي. أما إذا كان سطحها العاكس هو الداخلي فحينئذ تسمى مرآة مقعرة.
وللتعرف على صفات الصور المتكونة في المرايا الكروية يلزم تعريف المصطلحات التالية :
1- قطب المرآة ( ق ) : هو مركز سطح المرآة .
2- مركز التكور( م ) : هو مركز الكرة التي تكون المرآة جزءاً منها ويكون أمام المرآة المقعرة وخلف المرآة المحدبة.
3- نصف قطر التكور( نق ): هو نصف قطر الكرة التي أخذت منها المرآة وهي المسافة ق م على الرسم.
4- المحور الرئيسي: هو الخط الذي يصل بين قطب المرآة ( ق ) ومركز التكور( م ).
5- البؤرة المرآة ( ب): هي النقطة التي تتجمع فيها الأشعة المتوازية الساقطة على المرآة المقعرة بعد انعكاسها ( بؤرة حقيقية ). وهي أيضاً النقطة خلف المرآة المحدبة والتي تبدو الأشعة خارجة منها بعد سقوط أشعة متوازية على سطح المرآة ( بؤرة وهمية ) .
6- البعد البؤري( ع ): هو المسافة بين قطب المرآة ( ق ) وبؤرة المرآة ( ب ).
2-
المرايا المقعرة
نستطيع التعرف على صفات الصور المتكونة في المرآة المقعرة عن طريق التجربة في المختبر. إلا أننا يمكن أن نحصل على هذه الصفات عن طريق الرسم الدقيق وذلك باتباع قاعدتين من القواعد الثلاث المدرجة أدناه.
1- الشعاع الساقط موازياً للمحور الرئيس ينعكس ماراً بالبؤرة.
2- الشعاع الساقط ماراً بمركز التكور ينعكس على نفسه.
3- الشعاع الساقط ماراً بالبؤرة ينعكس موازياً للمحور الرئيسي.
مثال:
– ما هي صفات الصورة المتكونة لجسم (السهم في الشكل) يبعد مسافة أكبر من ضعفي البعد البؤري عن مرآة مقعرة نصف قطر تكورها (نق) يساوي ( 6سم ).
انتشار الضوء في خطوط مستقيمة
1- انتشار الضوء في خطوط مستقيمة (مبدأ فيرما).
ينبعث الضوء من المصدر بخطوط مستقيمة , ويطلق على اتجاه سير الضوء اسم ” الشعاع الضوئي”. لقد صاغ العالم فيرما هذه الحقيقة على شكل قانون يسمى مبدأ فيرما “عندما ينتقل الضوء من نقطة إلى أخرى, فإنه يسلك المسار الذي يحتاج في أقل زمن ممكن”.
ولإثبات هذه الحقيقة سنقوم بإجراء النشاط رقم (1):
نشاط رقم (1)
الأدوات اللازمة: شمعة- ثلاث قطع كرتون مربعة (15سم ×15سم) في مركزها ثقب صغير- ثلاث قطع خشبية لتثبيت قطع الكرتون.
خطوات إجراء التجربة:
1- ضع قطع الكرتون بعد تثبيتها باستخدام القطع الخشبية فوق سطح الطاولة.
2- اجعل الثقوب الثلاث في القطع على نفس الخط المستقيم.
3- هل تستطيع رؤية ضوء الشمعة من الجهة الأخرى؟
4- الآن حرك أحد قطع الكرتون بحيث لا تصبح الثقوب على استقامة واحدة وحاول رؤية ضوء الشمعة مرة أخرى.
ما هو الشرط اللازم حتى تستطيع رؤية ضوء الشمعة؟

2- مبدأ استقلال الأشعة:
عندما تتقاطع الأشعة الضوئية فإن أحداً منها لا يؤثر على الآخر, بل يواصل كل منها السير في اتجاهه دون أن يتأثر بالإشعاع الآخر.

انكسار الأشعة الضوئية

قال تعالى : ” ألم تر إلى ربك كيف مد الظل و لو شاء جعله ساكناًً و جعلنا الشمس عليه دليلاً ، ثم قبضناه إلينا قبضاً يسيراً .” الفرقان ( 45) .
فالظل هنا هو الظل بمعناه العام ، سواء كان ظل حيوان أو نبات أو جماد بما في ذلك الليل الذي هو ظل الأرض .
تدعو الآية الكريمة أن نرى صنع الله ن الذي أتقن كل شيء صنعه ، فيما نرى ، في الظل . فهو الذي خلقه و خلق أسبابه و مده ، و لو شاء سبحانه لغير في أسبابه فجعله ساكناً لا يتحول و لا يزول ، كما يحدث في بعض الكواكب ، كعطارد مثلاً ، ذلك الكوكب القريب من الشمس ، و الذي يقابلها بوجه واحد فقط . فنهاره نهار أبدي ، و ليله ليل أبدي ،و الظل فيه ساكن .
و جعل سبحانه الشمس دليلاً على الظل فبها عرف و بها حدد .
ثم يعرض سبحانه واحدة من آياته في الآفاق . و إحدى معجزات هو الظل لعصرنا : ” ثم قبضناه إلينا قبضاً يسيراً”.
و يجب أن ننتبه هنا إلى أن الظل الذي ( قبضناه قبضاً يسيراً) هو الظل الذي دليله ضوء مصباح مثلاً ، أو ضوء نار ،لا يدخل في حكم الآية .
إن اله سبحانه لم يترك الظل الناتج في الأرض عن الشمس على امتداده الذي كان من الممكن أن يكون عليه . بل قبضه قليلاً ،و جعله أصغر أو أقل من ذلك .
لتفسير الآية و فهمها جيداً ، يجب ان ندرس حادثة انكسار الأشعة عندما تمر من وسط إلى آخر مختلف الكثافة .
ـ تسير الأشعة الضوئية بخطوط مستقيمة ما دامت في وسط متجانس ذي كثافة ثابتة ، حتى إذا صادفت طبقة أخرى مختلفة الكثافة ، اجتازتها ـ إن كان ذلك ممكنا ً ـ بعد أن ينحرف خط سرها انحرافاً يتناسب مع الفرق بين الكثافتين .
أظن أن كل واحد منا رأى هذه الحادثة عندما رأى صدفة ، أو غير صدفة ، قضيباً موضوعاً بشكل مائل في الماء ، و القسم الأعلى منه بارز في الهواء ، فإن سحبه من الماء وجده مستقيماً و إن أرجعه وجده معقوفاً . و لعل البعض لم يستطع أن يجد تعليلاً لهذه الحادثة .
إن تعليلها هو أن الأشعة تنحرف عندما تنتقل من الماء إلى الهواء بسبب اختلاف الكثافتين ، فيظهر القضيب و كأنه معقوف .
نعود إلى الظل الذي دليله الشمس .
ينبعث الضوء من الشمس ، و يسير عبر الفراغ الكوني بخطوط مستقيمة ، حتى إذا اصطدم بعضه بالهواء الأرضي ، ذي الكثافة العالية بالنسبة للفضاء ، انحرف ليسير في خط مستقيم آخر يشكل خط سيره في الفراغ زاوية ما .
هكذا يظهر لنا بوضوح كيف ا، حادثة الانكسار سبب قبض الظل قبضاً يسيراً .

الحيود Diffraction

تعليم_الجزائر

الحيود هو انحناء الموجة حول فتحة صغيرة ، وتكون ظاهرة الحيود أوضح ما يمكن عندما يكون اتساع الفتحة مساوياً لطول الموجة أو أصغر منه قليلاً .

وللتعرف على حيود الموجات المائية ، نجري النشاط التالي :
* نشاط :
– الأدوات المستخدمة :
حوض التموجات المائية – مسطرة – حاجز فيه فتحة ضيقة .
– الخطوات :
1. ضع الماء في الحوض إلى مستوى مناسب .
2. حرك حافة مسطرة بحيث تهتز عند أحد جوانب الحوض .
3. ضع الحاجز في مسار الموجات .

ماذا تلاحظ ؟
نلاحظ تغير شكل الموجات بعد نفاذها من الفتحة الصغيرة بحيث يحدث لها انحناء حول الفتحة .

تفسير الحيود باستخدام مبدأ هويجنز
عند مرور الموجات من خلال فتحة وتكون الفتحة أصغر من الطول الموجي للموجات المستخدمة فإن جبهة الموجة التي تصطدم بالفتحة تعمل كمصدر لموجة ثانوية تنتشر خلف الفتحة على شكل دوائر متحدة المركز, مركزها هو الفتحة فيكون مقدار الانحناء أكبر ، أما في الحالة التي تكون الفتحة أكبر من الطول الموجي فإن الفتحة تعمل كجزء من جبهة الموجة ، يمكن اعتباره عدة نقاط تعمل كل منها كموجات ثانوية تشترك في عمل جبهة جديدة لموجة تنتشر خلف الفتحة ومقدار انحناء الجبهة الجديدة أقل من الحالة الأولى .

الإستقطاب Polarization

تعليم_الجزائر

تطبيقات على خاصية الاستقطاب
مرشح البولارويد في كاميرات التصوير :
نرى بعض الأجسام المراد تصويرها تتعرض لكمية كبيرة من الضوء حسب نوعية الأجسام التي خلفها وعند التصوير تظهر الصورة غير واضحة وللتغلب على هذه المشكلة تم وضع مرشح من البولارويد أمام عدسة الكاميرا للتخلص من الضوء المنعكس من الأجسام خلف الجسم المراد تصويره ، ويكون معظمه في حالة استقطاب فيدار مستوى المرشح حتى يصبح عمودياً على مستوى استقطاب الضوء المنعكس أما الضوء المنعكس من الجسم المراد تصويره فلا يتأثر بالمرشح لأنه ضوء غير مستقطب

. ماهية الأشعة السينية:
استطاع الإنسان منذ القدم أن يثبت أن الضوء ينساب بخط مستقيم داخل مكان معين وينعكس على المرآة حسب قوانين ثابتة وينكسر إذا ما انتقل من جسم إلى جسم حسب قوانين ثابتة أيضا . وقد ساعد اكتشاف هذه القوانين على إرساء قواعد علم مهم ألا وهو علم البصريات الهندسية الذي ساهم مساهمة فعالة في دفع عجلة التقدم العلمي والتقني للإنسان فتمت بفضله منذ قرون صناعة العدسات والمرآيا والميكروسكوب وأجهزة رصد النجوم.. الخ. وبقيت هذه القوانين وهذه الصناعة حتى اليوم مما يعني أن ملاحظات الإنسان الآنفة الذكر تشكل تقريبا (approximation) حسن الدقة للحقيقة المطلقة.
ولم يطرح الفيزيائيون السؤال الكبير عن طبيعة هذا الضوء إلا بعد أن بدأت بعض الملاحظات الجديدة تتناقض مع القوانين المذكورة أعلاه . فلما تبين للباحثين أن الضوء إذا مر عبر فتحة صغيرة ينتشر عند خروجه منها وكأن الفتحة هي مصدر الضوء فعرفوا أن قانون الإنسياب بخط مستقيم هو قانون قد يكون صحيحا وكافيا في بعض الميادين والتجارب ولكنه بالتأكيد قاصر عن تفسير كل الظواهر.
وبعد دراسة معمقة لكل خصائص الضوء اضطر الباحثون للتعلق بفرضية جديدة تقضي بأن الضوء هو عبارة عن موجة تنساب في المكان دون أن يكون بالإمكان تحديدها بنقطة وأن هذه الموجة(أو ذبذبتها ) يحدد لون الضوء. ولقد حال توزع الموجة في المكان وانتشارها دون حصر الطاقة بنقطة معينة مما جعل تفسير الظاهرة الكهرضوئية صعبا.
إذا أرسلنا ضوءا إلى مادة صلبة فمن الممكن في بعض الحالات أن يحرر الضوء الكترون من الجسم الصلب .وهذا يعني أن الضوء حمل معه طاقة كافية لسلخ الالكترون عن الذرة . ومن الضروري أن تكون هذه الطاقة محصورة قي مكان صغير ( هو حجم الكترون ) وهذا ما يتناقض مع الطبيعة الموجية.
وحدت هذه الظاهرة الفيزيائيين على طرح نظرية جديدة تقضي بأن الطاقة لا تنساب مع الضوء بشكل مستمر وغير متقطع وبأن الضوء مؤلف من حبيبات ضوء يسمى واحدها فوتون “Photon” تحمل الطاقة. وفي وسع هذه الفرضية تفسير الظاهرة الكهرضوئية ولكنها لا تستطيع تفسير ظواهر أخرى كالحيود مثلا. بينما تستطيع فرضية الطبيعة الموجية للضوء تفسير ظاهرة الحيود وتعجز عن تفسير ظاهرة (Compton) أو الظاهرة الكهرضوئية وهذا يعني أن الفرضيتين هما وجهان لحقيقة واحدة وأنه يحسن استعمال هذا الوجه أو الآخر حسب ميدان العمل . وهذا ما حدا الفيزيائي الفرنسي دوبرويل “De Broglie” للقول:”الموجات والجسيمات متصلة اتصالا وثيقا في الطبيعة وعلى الأقل في حالة الضوء “.
للضوء إذا طبيعة موجية وموجته كهرومغناطيسية يمكن تمييزها بطول الموجة “λ ” لمدا أو ذبذبتها . تجدر الملاحظة إلى أن طول الموجة يساوي حاصل قسمة سرعة الضوء C بالذبذبة N:

λ = C/N

إن الجسم المضيء الذي يرسل ضوءا ما ذا ذبذبة معينة يستطيع أن يمتص ضوءا له نفس الذبذبة . وهذا ما دفع الفيزيائي”Planck “ بلانك للقول بأن الطاقة المنبعثة من الضوء أو الممتصة لا يمكن أن تتغير إلا بكميات متقطعة. وأصغر كمية طاقة أو حبيبة طاقة تساوي حاصل ضرب ذبذبة الموجة بثابت دائم “ثابت بلانك”.

E=Hn

وللأشعة السينية نفس طبيعة الضوء أي أنها موجة كهرومغناطيسية تختلف عن موجة الضوء المرئي بطول الموجة فقط إذ أن ذبذبة أي أشعة سينية أعلى من ذبذبة الضوء المرئي وبالتالي فإن الطاقة التي تحملها أكبر من تلك التي يحملها أي ضوء مرئي وتجدر الملاحظة إلى أن كل ما قيل حول ازدواجية طبيعة الضوء (موجية وجسيميه) يبقى صحيحا في ميدان الأشعة السينية.
إن كل قوانين البصريات الهندسية والبصريات الفيزيائية تسري على الأشعة السينية مع بعض المميزات الخاصة والمتعلقة بتعامل الأشعة السينية مع المادة نظرا لقصر طول الموجة “وضخامة” كمية الطاقة التي يحملها الفوتون السيني نسبيا: فطول الموجة السينية يوازي تقريبا قطر الذرة من ناحية والمسافات بين الذرات المتواجدة في المادة الصلبة من ناحية ثانية.
والطاقة التي تحملها حبيبة س موازية للطاقة اللازمة لاستخراج الكترون من الطبقات الداخلية في الذرة بينما الطاقة التي تحملها حبيبة الضوء العادي ( الفوتون ) توازي الطاقة اللازمة لفصل الكترون من الطبقات الخارجية.
وتجدر الملاحظة إلى أن مسار الأشعة السينية لا ينكسر عمليا عند مروره من مادة إلى مادة أخرى كما هو الحال بالنسبة للضوء المرئي وهذا يعني أنه لا يمكن صناعة عدسات خاصة بالأشعة السينية .
وبالرغم من الكثير من الصعوبات فقد استطاع العلماء صناعة مرايا عاكسة للأشعة السينية. وقد استخدمت هذه المرايا في ميادين عديدة خاصة في الميادين التي تحتاج لحصر كمية كبيرة من الضوء السيني في مساحة متناهية الصغر.
إن طول موجة الأشعة السينية أقصر بكثير من طول موجة أي أشعة مرئية . كما أن طول موجة الأشعة السينية يختلف حسب طبيعة معدن المهبط.
تجدر الإشارة أن وحدة القياس المستخدمة لقياس طول الأشعة السينية في هذا الميدان هي الأنغستروم “Angstrom:A” والتي تساوي جزءا من مئة مليون من السنتمتر.
إن التشابه من حيث الطبيعة بين الضوء وبين الأشعة السينية والفارق بينهما من حيث طول الموجة . طرحا بسرعة إمكانية استعمال هذه الأشعة لفحص ودراسة الأجسام المتناهية الصغر وخاصة الذرات والجزيئات حيث أن طول موجة الأشعة السينية يوازي تقريبا قطر الذرة ولكن عند الشروع بدراسة تركيب الأجسام الصلبة بهذه الطريقة يجب أخذ كل الاحتياطات اللازمة لتفسير نتائج التجارب تفسيرا صحيحا.

3. خصائص الأشعة السينية :
نستطيع أن نستنتج مما سبق بعض خصائص الأشعة السينية ولكن من أجل حصر أهم هذه الخصائص يمكننا ذكر تلك التي ساهمت في توضيح طبيعتها وفي تطور استعمالها في شتى الميادين.
ــ الأشعة السينية تنساب بخط مستقيم وبسرعة مساوية لسرعة الضوء.
ــ لا تتأثر بوجود حقل مغناطيسي أو حقل كهربائي وهذا ما يدل على أنها لا تحمل أي شحنة كهربائية.
ــ يتغير طول موجة الأشعة السينية بحسب طبيعة معدن المهبط بين جزء من ألف من الأنغستروم وبين ألف أنغستروم.
ــ تؤثر على أفلام التصوير.

ــ تسبب فلورة أو فسفرة بعض الأجسام.

ــ لها تأثير كيمياضوئي .

ــ تستطيع جرح أو قتل الخلايا الحية وأحيانا إحداث تغيرات عضوية فيها.
ــ تتمتع كالضوء بازدواجية الطبيعة بحيث أنها تبدو في بعض الميادين كالموجة( الحيود مثلا ) وفي بعضها الآخر كمجموعة حبيبات طاقة قادرة على تحرير الكترون أو أكثر في بعض الأجسام الصلبة محدثة بذلك تيارا كهربائيا.

إن تنوع الخصائص إلى جانب تلك التي لم تذكر هنا أوجد العديد من التطبيقات المهمة . ويكفي أن نذكر على سبيل المثال الخدمات الجلية التي تقدمها الأشعة السينية في ميادين التصوير الطبي وفي ميدان دراسة تكوين الأجسام الصلبة وكيفية ترتيب الذرات داخلها . ونستطيع القول بأن عددا من هذه التطبيقات يدخل في ميادين الفيزياء والكيمياء والهندسة والطب والصناعة. إن السير نحو توحيد النظرية العلمية عند الإنسان يلاحظ بشكل واضح من تطور الأبحاث الأساسية في ميدان الأشعة السينية . فالفيزيائي الذي يستعمل الأشعة السينية في ميدان الأجسام الصلبة مضطر للإلمام بالكثير من النظريات الكيميائية خاصة فيما يتعلق بطبيعة الرباط بين الذرات داخل الجسم الصلب وبالتالي كمية الشحنة الكهربائية (أو عدد الالكترونات) المركزة في كل ذرة .

صدور الأشعة السينية
تعليم_الجزائرتعليم_الجزائر

تصدر الأشعة السينية في كل مرة تتعرض فيها المادة للاصطدام بإلكتروناتٍ سريعة ذات قدرة حركية عالية. ويتألف أنبوب الأشعة الحديث من زجاج مفرغ من الهواء يحوي سلك وشيعة قابلاً للتوهج هو المهبط cathode، وقطعة من المعدن هي المصعد anode. وعندما يتوهج السلك بازدياد درجة حرارته عند تطبيق تيار كهربائي على طرفيه، تصدر عنه إلكترونات عدة بفعل الحادثة الفيزيائية المعروفة بالإصدار الحراري الشاردي (الإيوني)، فإذا طبق فرق كمون عال بين هذا السلك المتوهج (المهبط) والقطعة المعدنية (المصعد) تتسارع حركة الإلكترونات وتتجه نحو المصعد لترتطم به وتصدر عن هذا الارتطام فوتونات ذات طاقة متفاوتة يؤلف مجموعها الأشعة السينية وكمية كبيرة من الحرارة توجب تبريد المصعد تبريداً مستمراً، إذ إن الأشعة السينية الصادرة تكوّن 1% من طاقة الإلكترونات الحركية عند اصطدامها بالمصعد ويضيع القسم الأكبر من هذه الطاقة حرارياً.

تتألف الأشعة السينية الناجمة عن تصادم الإلكترونات والمادة من نوعين رئيسين يكون الأول منهما طيفاً متصلاً لأشعة ذات أطوال موجية متقاربة لا علاقة لها بنوع المادة الكيمياوي للمصعد، في حين يتمتع الثاني بطول موجة خاص يتميز على منحنى طيف الأشعة الصادرة بشكل خط حاد ذي علاقة بنوع المادة الكيمياوي للمصعد. لذلك سمي هذا النوع الأخير من الأشعة السينية الصادرة الأشعة المميزة.

تتعلق قدرة اختراق الأشعة للمادة أو نفوذها بطول موجتها، وبالتالي بالطاقة الحركية للإلكترونات المتصادمة مع المصعد، فكلما كانت طاقة هذه الإلكترونات عالية كان طول موجة الأشعة السينية قصيراً، وكانت شديدة النفوذ أو قاسية. وبالعكس كلما خفت هذه الطاقة كان طول موجة الأشعة السينية الصادرة طويلاً وكانت الأشعة قليلة النفوذ أو لينة، وتزداد طاقة الإلكترونات الحركية طرداً مع زيادة فرق الكمون المطبق (فولتاج) فاذا اقترب هذا من 500.000 فولط كان طول موجة الأشعة السينية الصادرة قريباً من أطوال موجة أشعة غاما.

خصائص الأشعة السينية

تمكن رونتغن منذ اكتشافه الأشعة السينية من دراسة خصائصها النوعية ولخصها بأن هذه الأشعة تسبب تفلور عدد من المواد من بينها مركب سيانيد البلاتين مع الباريوم. وتؤثر في المستحلبات الفضية المستخدمة في التصوير الضوئي. وتزيل الشحنة الكهربائية للمواد. ومعظم المواد شفافة لها. وتسير وفق خط مستقيم. ولا يغير اتجاهها مرورها عبر ساحات مغنطيسية، لذلك فهي ليست سيلاً من جزيئات مشحونة. وتصدر عندما تصطدم الأشعة المهبطية بأي مادة. وإن العناصر الثقيلة أكثر مردوداً من حيث إصدارها. ولا تنعكس ولا تنكسر بسهولة كالأشعة الضوئية.
تعليم_الجزائر

صورة شعاعية للمعدة (في وضعية الوقوف)

وقد عكف الفيزيائيون منذ اكتشاف الأشعة السينية على دراسة خصائصها بالتفصيل وتبين لهم فيما بعد أنها تحدث بمرورها في المادة تأيناً ionisation في ذرات هذه المادة تختلف نسبته باختلاف طاقة فوتوناتها.

استعمال الأشعة السينية

استعملت الأشعة السينية في مجالات الطب والصناعة، وكان الأطباء أول المستفيدين من استعمالها بسبب اختلاف نسب امتصاصها في الأنسجة الحية باختلاف نوع هذه الأنسجة، فاستخدمت خاصة الفلورة في التنظير الشعاعي ودراسة حركية الأعضاء، ثم استخدمت الدارة التلفزيونية في نقل الصورة المتفلورة إلى شاشة التلفاز الذي أصبح يستخدم في التنظير الشعاعي، وبذلك تناقصت كمية الأشعة اللازمة للحصول على الصورة المفلورة المتلفزة.

وكذلك استعملت الأشعة السينية في التصوير الشعاعي لمختلف أعضاء الجسم، ثم أدخل استعمالها مع الحواسيب للحصول على صور أكثر دقة وتفصيلاً للأعضاء المختلفة (أجهزة التصوير الطبقي المحوري).

واستخدمت الأشعة السينية أيضاً في معالجة الأورام الخبيثة ومنع انتشارها، وجهد الفيزيائيون في زيادة قدرة نفوذها في الأنسجة المختلفة للجسم للوصول إلىالأورام العميقة، فاستعملت المسرعات الخطية التي أصبحت اليوم من أحدث أجهزة المعالجة الشعاعية.

استخدمت الأشعة السينية أيضاً في الصناعة لكشف الهنات والشقوق في القوالب المعدنية والأخشاب المستعملة في صناعة الزوارق، كما ساعدت دراسة طيف امتصاص هذه الأشعة في المادة على جعل الأشعة السينية طريقة لكشف العناصر الداخلة في تركيب المواد المختلفة وتحليلها. وتستعمل في هذه الحالة الأشعة السينية التي تميز كل عنصر من العناصر الكيمياوية.

تبين منذ السنوات العشر الأولى لاستعمال الأشعة السينية في الطب (التشخيص والمعالجة) أن هذه الأشعة لا تخلو من التأثيرات المؤذية. فقد عرف منذ البدء، عندما استخدمها الأطباء في التنظير الشعاعي لجبر كسور العظام، أنها تحدث حروقاً في أيدي الطبيب الفاحص وأن لها تأثيراً في خلايا نقي العظام والغدد التناسلية. وأظهرت الدراسات الخلوية الحيوية فيما بعد أن التأثيرات المؤذية للأشعة تسبب حتى بمقادير قليلة أحياناً تبدلات في صبغيات نواة الخلية الحية (طفرات) مع مايتلو ذلك من تشوهات ولادية أو من اضطراب تكاثر هذه الخلايا وبالتالي موتها.

وثبت أن تأثيرات الأشعة السينية في الخلية الحية تقع في أثناء الطور الثالث للانقسام الخلوي، لذلك كانت الأنسجة الحية ذات الانقسام الخلوي النشيط أشد تأثراً بها كأنسجة نقي العظام والغدد التناسلية.

لذلك فقد أحجم الأطباء عن استعمالها على المرأة الحامل في الأشهر الأولى من الحمل، واستخدمت الواقيات الرصاصية لحماية العاملين بها. كما أن الهيئة الدولية للطاقة الذرية واللجان المتفرعة عنها قامت بنشر توصيات الحماية والأمان الخاصة بالأشعة السينية في منشورات خاصة تناولت القوانين الناظمة لاستعمالات هذه الأشعة وفرضت معايير وأسساً لصناعة الأجهزة الشعاعية ألزمت الشركات الصانعة التقيد بها، كما حددت المقادير والجرعات الشعاعية العظمى المسموح بها التي لا تحدث ضرراً يذكر.


التصنيفات
الفيزياء الموجية والضوء

خصائص الضوء و الصوت الفيزيائية

خصائص الضوء و الصوت الفيزيائية (هذا الموضوع موجود في منهاج الصف العاشر الأردني)

مقدمــة
من المعروف أن علم الفيزياء عرفه العرب بعلم الطبيعيات ومن فروع هذا العلم التي كان للعرب دورا عظيما فيها ( فيزياء الضوء ) ويعتبر عبقري العرب (( الحسن بن الهيثم )) ( 965 م – 1039 م ) منشىء علم الضوء بلا منازع ولا يقل أثره في علم الضوء عن أثر نيوتن في علم الميكانيكا ويعتبر كتابه المناظر المرجع لفيزياء الضوء لعدة قرون وقد وضع ابن الهيثم القوانين الأساسية لانعكاس الضوء وانكساره وفسر الرؤية المزدوجة وظاهرة السراب ولكن أهم انجازاته كانت الخزانة ذات الثقب والتي تعتبر البداية والمقدمة لاختراع الكاميرا وصولا الى عصر المعلوماتية الان وما نستخدمه من أوساط متعددة
الضوء : موجات كهرومغناطيسية تنتقل في الفراغ بسرعة تساوي 300 ألف كيلومتر في الثانية وتتوقف طاقة موجات الضوء على تردد هذه الموجات فكلما زاد تردد موجة الضوء زادت طاقتها
كلمتين ( حرص خزين ) حيث يمثل كل حرف الحرف الثاني من اسم اللون وهي مرتبة تصاعديا حسب التردد ( أحمر – برتقالي – أصفر – أخضر – أزرق – نيلي – بنفسجي )وتعتبر الشمس أكبر مصدر للطاقة الضوئية

طبيعة الضوء
مقدمة تاريخية : بما أن الضوء يملك طاقة وينقلها في الفضاء وبما أن الطاقة تنقل إما بالاجسام أو بالموجات اذا يوجد فرضيتين حول طبيعة الضوء هما ( النظرية الجسيمية الدقائقية لنيوتن ) ( النظرية الموجية للعالم الهولندي هيجنز ) ولكن لم تسطع هاتين النظريتين تفسير جميع الظواهر البصرية مما استوجب وضع نظرية توحد بين الخواص الموجية والجسيمية للضوء هي النظرية الكمية ونذكر هنا بلانك واينشتين وبوهر
خواص الضوء
الخواص الهندسية [الانتشار في خطوط مستقيمة – السرعة المحدودة – الانعكاس – الانكسار – التشتت ]
الخواص الموجية [ التداخل – الحيود – الخاصية الكهرومغناطيسية- الاستقطاب – الانكسار المزدوج ]
الخاصية الكمية [ المدارات الذرية – كثافات الاحتمالية – مستويات الطاقة – الكمات – الليزر ]

انعكاس الضوء
ارتداد الأشعة الضوئية في نفس الوسط عندما تقابل سطحا عاكسا الشعاع الساقط هو الشعاع الذي يصل الى السطح العاكس الشعاع المنعكس هو الشعاع الذي يرتد عن السطح العاكس
زاوية السقوط هي الزاوية المحصورة بين الشعاع الساقط والعمود المقام من نقطة السقوط على السطح العاكس زاوية الانعكاس هي الزاوية المحصورة بين الشعاع المنعكس والعمود المقام من نقطة السقوط على السطح العاكس

قانونا الانعكاس Laws of Reflection
القانون الأول زاوية السقوط = زاوية الانعكاس
القانون الثاني الشعاع الضوئي الساقط والشعاع الضوئي المنعكس والعمود المقام من نقطة السقوط على السطح العاكس تقع جميعا في مستوى واحد عمودي على السطح العاكس
بعض المصطلحات الهامة في الضوء
انكسار الضوء
هو تغير اتجاه الشعاع الضوئي عندما يجتاز السطح الفاصل بين وسطين شفافين مختلفين
الكثافة الضوئية لوسط ما هو المقدار الذي يميز اعتماد سرعة انتشار الضوء على نوع الوسط وتقاس بالقيمة العددية لمعامل الانكسار المطلق للوسط أو هي قدرة الوسط على كسر الأشعة الضوئية عند نفاذها فيه السطح الفاصل هو السطح الذي يفصل بين وسطين شفافين مختلفين في الكثافة الضوئية الشعاع الضوئي الساقط هو الشعاع المتجه الى السطح الفاصل ويقابله في نقطة السقوط زاوية السقوط هي الزاوية المحصورة بين الشعاع الضوئي الساقط والعمود المقام من نقطة السقوط على السطح الفاصل
الشعاع الضوئي المنكسر هو المسار الجديد للشعاع الضوئي في الوسط الثاني بعد نفاذه من السطح الفاصل زاوية الانكسار هي الزاوية المحصورة بين الشعاع الضوئي المنكسر والعمود المقام من نقطة السقوط على السطح الفاصل
قانون الانكسار الأول نسبة جيب زاوية السقوط الى جيب زاوية الانكسار لوسطين معينين هي مقدار ثابت يعرف بمعامل الانكسار النسبي بين الوسطين
قانون الانكسار الثاني يقع الشعاع الساقط والشعاع المنكسر في مستوى واحد مع العمود المقام من نقطة سقوط الشعاع على السطح الفاصل بين الوسطين.
معامل الانكسار النسبي بين وسطين هو النسبة بين سرعة الضوء في الوسط الأول وسرعة الضوء في الوسط الثاني معامل الانكسار المطلق لوسط هو النسبة بين سرعة الضوء في الفراغ أو الهواء وسرعة الضوء في هذا الوسط.
قانون سنل ناتج ضرب معامل الانكسار المطلق للوسط الأول في جيب زاوية السقوط يساوي ناتج ضرب معامل الانكسار المطلق للوسط الثاني في جيب زاوية الانكسار.
ملاحظات هامة
1- من القانون الأول يتضح أن بزيادة زاوية السقوط تزداد زاوية الانكسار ولكن ليس بصورة متناسبة
2- للشعاعين الساقط والمنكسر خاصية انعكاسية
3- عند عبور شعاع الضوء من وسط كثافته البصرية أقل – السرعة فيه أعلى – الى وسط كثافته البصرية أعلى – السرعة فيه أقل – فانه ينكسر مقتربا من العمود
4- عند عبور شعاع الضوء من وسط السرعة فيه أقل الى وسط السرعة فيه أعلى – من ماء الى هواء – فان الشعاع ينكسر مبتعدا عن العمود ومقتربا من السطح الفاصل وفي هذه الحالة يكون معامل الانكسار النسبي بين الماء والهواء أصغر من الواحد وهذا الذي يفسر النقص الظاهري لعمق خزان الماء عندما ينظر الانسان الى الماء
5- اذا سقطت الأشعة الضوئية على السطح الفاصل بين وسطين شفافين بصورة عمودية فانها تنفذ الى الوسط الثاني دون أن تنكسر
6- عند سقوط حزمة ضوء رفيعة من الهواء الى الماء نلاحظ أنه في نقطة السقوط ينعكس جزء من الضوء وينفذ الجزء الاخر في الماء منكسرا وبالتالي تكون هناك زاوية سقوط وزاوية انعكاس وزاوية انكسار.
ونسأل هنا سؤال كم من الطاقة التي ينقلها الاشعاع الى السطح الفاصل بين الوسطين تؤخذ من قبل الاشعة المنعكسة وكم من الطاقة تؤخذ من قبل الاشعة المنكسرة ؟ للاجابة على هذا السؤال نفرض أن الاشعاع يحمل الى نقطة السقوط خلال فترة زمنية معينة طاقة ولتكن E بعد ذلك تنقسم هذه الطاقة فيكون نصيب الاشعة المنعكسة منها E refl بينما نصيب الاشعة المنكسرة E refr ومن قانون حفظ الطاقة نجد أن الطاقة الساقطة تساوي مجموع الطاقتين التي تحملها الاشعة المنعكسة والتي تحملها الاشعة المنكسرة وبما أن كل وسط ما عدا الفراغ يمتص من طاقة الاشعاع اذا لا تصلح هذه المساوة الا عند القياس بالقرب من نقطة السقوط فاذا عبر الشعاع الضوئي لمسافات كبيرة من الوسط ولم يضعف الا بشيء صغير نسمي هذا الوسط وسطا شفافا مثل الزجاج والماء والكحول وبالعكس تمتص المعادن بشدة كبيرة الاشعاع الضوئي الذي ينفذ اليها بمعنى أنها ليست شفافة بالنسبة له وتعكس القسم الاعظم من الاشعاعات التي تسقط عليها ونلاحظ هنا أن كل وسط بدرجة أو بأخرى يعكس ويمتص الاشعاع الضوئي ويعتمد انعكاس وامتصاص الاشعاع الساقط على الجسم على – نوع المادة – حالة السطح – تركيب الاشعاع – زاوية السقوط – حيث عند زيادة زاوية سقوط الاشعة يزيد نصيب الضوء المنعكس وينقص نصيب الضوء المنكسر ونلاحظ أيضا اعتماد الانعكاس والامتصاص على تردد الموجات يكون له طبيعة اختيارية أي أن المادة تعكس أو تمتص بقوة ذبذبات بتردد معين وتضعف ذبذبات بتردد اخر وعلى سبيل المثال يمتص الغلاف الجوي للارض الموجات ذات الطول الموجي القصير من الطيف المرئي بقوة ( وهذا من نعمة الله علينا ) بينما يمتص الموجات الطويلة أضعف بكثير وهنا أطرح سؤالا لماذا نستخدم الضوء الأحمر للاشارة الى الخطر وأيضا للتنبيه على الرغم من أن العين حساسة أكثر للاشعة الخضراء ؟

__________________


التصنيفات
الفيزياء الموجية والضوء

مزايا ومجالات اشعة تيرا هيرتز

مزايا ومجالات استخدامها:
لقد انجذب الباحثون الي هذا النطاق من الاشعة للمزايا التكنو لوجية التي تتمتع بها,حيث ان هذه الاشعه يمكن تركيزها واستخدامها في عمل صور ذات بصمة معينه.ويعرف هذا التصوير بالتصوير الاقتراني.وعلي عكس من الاشعه السينية فان استخدام هذه الاشعة غير ضاره بالنسيج الحيوي ولذا فهي اكثر امانًا.بل ان الأشعةالسينية تعجز في الكشف عن بعض معلومات المادة بسبب الحركة الانتقالية والدورانية والاهتزازيه فيما تستطيع أشعةا لتير ا هيرتز أن تعطي المعلومات عن المادة دون ان تتاثر بالحركه الانتقاليه والدورانيه.
ومجالتها:
1-التصوير في المجال الطبي الحيوي والتشخيص الجيني؛فقدرتها علي الكشف عن انواع من سرطان الجلد لايستهان بها ,اما مبدا الكشف عن المرض فيعتمد علي اظهار الاشعه لفائض السوائل داخل الانسجه السرطانية بلون اغمق من لون الأنسجةالأخرى’كما تسمح بالكشف عن التسوس تحت ميناالأسنان بوقت أبكر بكثير من اكتشافه بواسطة الأجهزه التقلية كا لشعه السينية.
2-ويمكن لأشعة تير ا هير تزكذلك أنتحقق تقدما في مجال الالكترونيلت الدقيقة ةتكنو لوجيا الأستشعار عن بعد .
3-وفي علم الفلك والتطبيقات الأمنية حيث يمكنها اختر اق الملابس والورق واللداءن للكشف عن اسلحة المعدنية والبلاستيكية والخزفية ,كما يمكن التعر ف علي المتفجرات عن طريق قراءة بصمتاتهاالطيفية المميزةلها
(ويعكف العلماءفي جامعة ليدز في بريطانيا علي مشروع استخدام الاشعة لقراءةمحتوى كتاب دون الحاجه الي فتحه,ويعتمد ذلك علي اساس ان تير ا هيرتز تتعامل بطريقه مميزة مع ا لتركيبة الالكيميائية التي تتعرضها ,وبالتالي فهي قادره التمييز بين صفحات الكتاب البيضاء و الصفحات المكتوبة بالحبر عن طريق تسليط الاشعة والتصويربطريقة خاصة تصل بنا لطبقات الكتاب صفحة,صفحة,وبدقة عالية تعتمد علي اختلاف معامل الانعكاسية والامتصاصية بسبب اختلاف المواد ,وهكذا فقد يتمكن هولاء الباحثين من اعادة الاطلاع علي محتوى مخطوطات قديمة يمكن أن تتضرر اذا تم فتحها!تعليم_الجزائر


التصنيفات
الفيزياء الموجية والضوء

الضربات

نفرض جسيما في وسط يتذبذب تحت تاثير موجتين متحدتين في السعة و مختلفتين قليلا في التردد , كما في الشكل في الرابط التالي :-

تعليم_الجزائر

الذي يبين العلاقة بين ازاحة الجسيم و الزمن لكل موجة على حدة و كذلك يوضح المحصلة و هي مجموع الازاحتين عند كل فترة . و يلاحظ ان سعة الموجة المحصلة غير ثابت بل تتغير مع الزمن .
نفرض ان ازاحة اي جسيم عند اي زمن (t) هي (y1) نتيجة تحرك موجة ذات تردد (f1) . فستكون معادلة حركة الجسيم هي :-
Y1 = A sin 2 π f1t
حيث (A) هي سعة الذبذبة.
و اذا كانت ازاحة الجسيم نفسه عند نفس الزمن هي (y2) نتيجة تحرك موجة اخرى ترددها (f2) حيث (f1 , f2) لا تختلفان كثيرا و ان الموجتين لهما نفس السعة :-
Then y2 = A sin 2 π f2t
اذن محصلة الازاحة
Y = y1 + y2
Y = A sin 2 π f1t + A sin 2 π f2t
Y = 2A cos 2π ([f1-f2]/2)t * sin 2π ([f1+f2]/2)t
Y = a sin 2π ([f1+f2]/2)t
و هي تمثل ذبذبة دورية سعتها :-
a = 2A cos 2π ([f1-f2]/2)t
و ترددها :-
f = [f1+f2]/2
اي متوسط تردد الموجتين الاصليتين.
و يلاحظ ان السعة تتغير مع الزمن (t) , و اكبر قيمة للسعة هي (2A) عندما :-
cos 2π ([f1-f2]/2)t = +1
or cos 2π ([f1-f2]/2)t = -1
اي عندما :-
π (f1-f2)t = kπ
حيث :- k = 0 , 1 , 2 , 3 , …….
اي عندما :-
t = 0/[f1-f2] , 1/[f1-f2] , 2/[f1-f2] , 3/[f1-f2] , ……
الفترة الزمنية بين اكبر سعتين متتاليتين هي :-
1/[f1-f2]
اذن عدد السعات الكبرى في الثانية هو [f1-f2]
اما اصغر قيمة للسعة فهي صفر عندما :-0 cos 2π ([f1-f2]/2)t =
اي عندما :-
π (f1-f2)t = kπ+(π/2)
حيث :- k = 0 , 1 , 2 , 3 , ………
اي عندما :-
t = [k/(f1-f2)]+[1/2( f1-f2)] = 1/2( f1-f2) , 3/2( f1-f2) , 5/2( f1-f2) , ….
اذن الفترة الزمنية بين اصغر سعتين متتاليتين هي :-
1/( f1-f2)
عدد السعات الصغرى في الثانية الواحدة هو ( f1-f2)
و حيث ان الضربة الكاملة تتكون من سعة كبرى واحدة و سعة صغرى واحدة.
اذن عدد الضربات في الثانية = ( f1-f2)
من ذلك نرى ان الموجة المحصلة هي موجة حركة توافقية بسيطة ترددها هو متوسط تردد الحركتين الاصليتين و سعتها تتغير بين مجموع السعتين,صفر,تردد قدره الفرق بين الترددين الاصليين.
و في الصوت لايمكن للاذن ان تميز بين ضربات نغمتين لهما تردد يزيد عن 7 ضربات في الثانية.

المصادر :
1- كتاب الصوت من سلسلة الفيزياء الهندسية للدكتور احمد شوقي عمار.


التصنيفات
الفيزياء الموجية والضوء

خصائص الضوء

خصائص الضوء
الإنكسار تعليم_الجزائر تعليم_الجزائر تعليم_الجزائر

مقدمة :
الإنكسار هو ظاهرة تغير مسار الشعاع الضوئي عند انتقاله من وسط شفاف إلى وسط شفاف آخر ” الانكسار”.
وللتعرف على الظاهرة جيداً يلزم تعريف المصطلحات التالية :

1- العمود المقام على السطح : هو عمود يقام على السطح الفاصل بين الوسطين.
2- زاوية السقوط ( qه1 ) الزاوية بين الشعاع الساقط والعمود المقام على السطح.
3- زاوية الإنكسار ( qه2 ) : الزاوية بين الشعاع المنكسر والعمود المقام على السطح.
قانونا الإنكسار:
1- القانون الأول: الشعاع الساقط, والشعاع المنكسر والعمود المقام على السطح الفاصل من نقطة, السقوط كلها تقع في مستوى واحد.
2- النسبة بين جيب زاوية السقوط وجيب زاوية الانكسار تساوي مقدار ثابت.
وبذلك يمكن القول أن:

حيث م 21 : معامل الإنكسار النسبي من الوسط ( 1 ) إلى الوسط ( 2 ) .

الحيود Diffraction

الحيود هو انحناء الموجة حول فتحة صغيرة ، وتكون ظاهرة الحيود أوضح ما يمكن عندما يكون اتساع الفتحة مساوياً لطول الموجة أو أصغر منه قليلاً .

وللتعرف على حيود الموجات المائية ، نجري النشاط التالي :
* نشاط :
– الأدوات المستخدمة :
حوض التموجات المائية – مسطرة – حاجز فيه فتحة ضيقة .
– الخطوات :
1. ضع الماء في الحوض إلى مستوى مناسب .
2. حرك حافة مسطرة بحيث تهتز عند أحد جوانب الحوض .
3. ضع الحاجز في مسار الموجات .

ماذا تلاحظ ؟
نلاحظ تغير شكل الموجات بعد نفاذها من الفتحة الصغيرة بحيث يحدث لها انحناء حول الفتحة .

تفسير الحيود باستخدام مبدأ هويجنز
عند مرور الموجات من خلال فتحة وتكون الفتحة أصغر من الطول الموجي للموجات المستخدمة فإن جبهة الموجة التي تصطدم بالفتحة تعمل كمصدر لموجة ثانوية تنتشر خلف الفتحة على شكل دوائر متحدة المركز, مركزها هو الفتحة فيكون مقدار الانحناء أكبر ، أما في الحالة التي تكون الفتحة أكبر من الطول الموجي فإن الفتحة تعمل كجزء من جبهة الموجة ، يمكن اعتباره عدة نقاط تعمل كل منها كموجات ثانوية تشترك في عمل جبهة جديدة لموجة تنتشر خلف الفتحة ومقدار انحناء الجبهة الجديدة أقل من الحالة الأولى .

الإستقطاب Polarization

تطبيقات على خاصية الاستقطاب
مرشح البولارويد في كاميرات التصوير :
نرى بعض الأجسام المراد تصويرها تتعرض لكمية كبيرة من الضوء حسب نوعية الأجسام التي خلفها وعند التصوير تظهر الصورة غير واضحة وللتغلب على هذه المشكلة تم وضع مرشح من البولارويد أمام عدسة الكاميرا للتخلص من الضوء المنعكس من الأجسام خلف الجسم المراد تصويره ، ويكون معظمه في حالة استقطاب فيدار مستوى المرشح حتى يصبح عمودياً على مستوى استقطاب الضوء المنعكس أما الضوء المنعكس من الجسم المراد تصويره فلا يتأثر بالمرشح لأنه ضوء غير مستقطب .


التصنيفات
الفيزياء الموجية والضوء

النظارات الشمسية

في فصل الصيف يكثر الناس من استخدام النظارات الشمسية والطبية الملونة، والملفت للانتباه أن استخدام هذه النظارات يكون ذاتيا وتلقائيا دون إجبار على ذلك، كما أن استعمالها ليس مقصورا على أعمار معينة، بل تشمل جميع الأعمار، وإن كانت شائعة بين الشباب والمسنين أكثر من الأطفال، وفي هذه الأيام نرى أنواعا كثيرة من النظارات الشمسية، والتي تختلف في الشكل واللون والطراز، بحيث لا تحجب أشعة الشمس القوية عن العين فقط، بل وتعطي جاذبية أكثر وتزيد الوجه جمالا.

العين و الألوان

ترى العين جزءا صغيرا من الطيف الشمسي، ويسمى بالطيف المرئي، ويتكون من الألوان السبعة بدءا باللون البنفسجي فالنيلي فالأزرق فالأخضر فالأصفر فالبرتقالي فالأحمر على التوالي. هذه الألوان يُعبّر عن طول موجاتها (ل) بوحدة قياس طولية صغيرة تسمى النانومتر ( يساوي واحد على مليون من المليمتر) حيث تبدأ أطوال الموجات للون البنفسجي ل =380نانومترا، وتنتهي بالأكثر طولا للون الأحمر عند ل= 780 نانوميتر، وتختلف حساسية العين لرؤية هذه الألوان حيث تصل حساسيتها إلى أكبر قيمة للون الأخضر وتقل كلما اتجهنا نحو البنفسجي أو الأحمر.
لذلك نجد أن الأطباء ينصحون الناس بالراحة في الريف حيث الخضرة تحيط بهم من كل مكان، مما يجعل العين تتعرض لأقل إجهاد ممكن وبالتالي تكون أكثر استرخاء.
والأشعة التي لها تردد +(ت) أكبر من تردد اللون البنفسجي أو طول موجي أقل من 380 نانوميتر. تسمى بالموجات فوق البنفسجية، والتي لها تردد أقل من تردد اللون الأحمر أو طول موجي أكبر من 780 نانوميتر تسمى بالموجات تحت الحمراء.
وحيث أن المنطقة المرئية للعين تنقسم إلى الألوان السبعة، فإن الأطياف فوق البنفسجية وتحت الحمراء تنقسم إلى ثلاث مناطق حسب المعايير الدولية.
وكثير من النظارات الشمسية تهتم بالشكل والمظهر واللون والطراز الذي يرضي ويشبع رغبة ونفسية الأشخاص أكثر من الاهتمام بحماية العين من الأشعة غير المرغوب فيها ونسبة نفوذها بالقياس إلى الأشعة المرئية، ولقد أوضحت الأبحاث في السنوات الأخيرة، أن النظارات الشمسية والطبية الملونة جميعها، سواء كانت رخيصة الثمن أو غالية الثمن ينفذ منها جزء كبير من الأشعة فوق البنفسجية، وتحت الحمراء لطيف أشعة الشمس، بينما تحجب كثيرا من الأشعة المرئية، لهذا فإن العين التي تتعرض فترة طويلة لأشعة الشمس النافذة من النظارات تصاب بالضرر، وخاصة إذا كانت نسبة الأشعة المرئية النافذة أقل من 80%من الأشعة الكلية الساقطة على العين.

الضرر الكيميائي و الضرر الحراري
إن الضرر الناتج عن أشعة الشمس على العين إما أن يكون كيميائيا أو حراريا، ومن دراسة نوعية الضرر يمكننا ربطه بطبيعة تكوين طيف أشعة الشمس حولنا، وطاقة الأشعة التي تنفذ من خلال النظارة، ثم خلال أجزاء العين حتى تصل إلى الجزء الحساس للرؤية وهو الشبكية، ونوعية التأثير المتبادل فيما بينها، كما تؤخذ في الاعتبار نوعية النظارة الشمسية أو الطبية الملونة التي تستخدم لتقليل كمية الضوء الساقط على العين، ويعتمد الضرر بالتالي على مدى اختلاف حساسية أجزاء العين لهذه الأشعة الشمسية، وأخيرا على نوعية الضرر الناتج إذا كان مؤقتا أو مزمنا.
الضرر الحراري لأشعة الشمس على العين يتم فقط، إذا نظرنا بصورة مباشرة ولفترة زمنية طويلة، أو حتى لفترة قصيرة لقرص الشمس مباشرة ولكن، باستخدام نظارة مكبرة أو تلسكوب رؤية، وفي الحالتين تعمل قرنية العين وعدستها على تركيز الطاقة الحرارية للأشعة تحت الحمراء الساقطة من أشعة الشمس على شبكية العين، وتضاعفها آلاف المرات مما يسبب ضررا بالغا، قد يأخذ شكل عمى مؤقت، ويماثل ذلك تماما جمع أشعة الشمس بعدسة محدبة على ورقة مما يؤدي لإحراقها، وأكثر الأشخاص تعرضا لهذا الضرر الحراري هم الباحثون في محطات الأرصاد الشمسية.
وحقيقة الأمر أن الضرر الحراري عادة يسبقه ضرر كيميائي، نتيجة تركيز الضوء المرئي والأشعة فوق البنفسجية، أما إذا زادت نسبة الأشعة تحت الحمراء فإن الضرر الكيميائي يقل، ويصبح الضرر الحراري هو السائد، علمنا إذن أن تأثير الأشعة تحت الحمراء على العين هو تأثير حراري، وعندما تنفذ هذه الأشعة من النظارات، وبنسبة كبيرة، فإن أجزاء العين تمتصها بنسب متفاوته، وتسبب ارتفاعا في درجة حرارة أجزاء العين، خاصة القرنية، والقزحية، ويظهر ذلك في شكل ألم شديد واحمرار في العين.
إن العصب الحسي الذي ينتهي عند القرنية والقزحية حساس جدا لأي ارتفاع بسيط في درجة حرارة العين، ويزداد الألم والضرر إذا ارتفعت درجة حرارة العين إلى 47درجة مئوية، حيث يسبب تعتيما مؤقتا لعدسة العين حتى ولو كان التعرض لفترات زمنية قليلة.

عمى الجليد
هناك ضرر آخر يسمى عمى الجليد، وهذا يحدث عندما تنظر عين الإنسان للجليد لفترة طويلة، حيث إن سطح الجليد يعكس أكثر ما يكون الأشعة فوق البنفسجية لطيف الشمس، وتفسير ذلك أن أكثر الموجات فوق البنفسجية ضررا على العين تلك التي لها طول موجي يتراوح ما بين 305-320نانوميتر، حيث أنها أكثر نفاذية عبر جدار القرنية من باقي الموجات فوق البنفسجية وتسبب ضررا كيميائيا يظهر على شكل تعتيم لشفافية السائل المائي للعين والعدسة البلورية لها.
ويعتمد هذا الضرر على فترة التعرض التي يمكن أن تكون ما بين عدة دقائق إلى ثماني ساعات حسب طبيعة تكوين خلايا العين لكل إنسان.
وعندما يسقط ضوء شديد على العين، فإن بؤبؤ العين يضيق كي يحدد كمية الضوء المناسبة للسقوط على الأجزاء الداخلية للعين، تماما مثلما نفعل بآلة التصوير( الكاميرا)، عند أخذ صورة تحت الضوء الشديد، لكن ذلك لا ينطبق على القرنية التي لا يحميها من أشعة الشمس إلا إغلاق الجفون أو تضييقها، مثلما يفعل رجال الإسكيمو لتفادي الأشعة فوق البنفسجية المنعكسة من سطح الجليد عند سقوطها على العين وعلى أجزائها الداخلية.

الفيض الضوئي النسبي

إذا اعتبرنا الفيض الضوئي الساقط على أجزاء العين هو حاصل ضرب كمية الضوء الساقطة عموديا مضروبا في مساحة بؤبؤ العين، ورمزنا بالرمز (ف) للنسبة بين فيض الضوء الساقط على العين باستخدام النظارة، والفيض بدون استخدام النظارة، فإننا نجد أن النظارة تكون أداة جيدة لحماية العين إذا كانت هذه النسبة(ف) أقل من واحد صحيح، أما إذا كانت النسبة أكبر من واحد صحيح، فإن النظارة في هذه الحالة تكون ضارة للعين.
في النظارات المثالية تكون هذه النسبة (ف) تساوي صفرا في المناطق فوق البنفسجية وتحت الحمراء لضوء الشمس. لكن ذلك لا يحدث حتى لأجود أنواع النظارات الشمسية.

حماية العين
عندما تظهر الشمس ساطعة وقت الظهيرة، والسماء صافية تماما من الغيوم والسحب، تكون شدة إضاءة الشمس كبيرة في المناطق الحارة أو على شواطئ البحار أو فوق الأسطح العاكسة لأشعة الشمس أو في مناطق باردة مغطاة بالثلوج، ويلزمنا نظام وقائي كي نقلل من شدة أشعة الشمس الساقطة على أعينينا.
فإذا استخدمنا نظارات شمسية لفترة طويلة فإنها تقلل كمية الموجات المرئية أكثر من تقليلها للموجات فوق البنفسجية وتحت الحمراء، وهذا بالتالي يؤذي العين ويسبب لها ضررا لسببين:
أولا: تزايد فتحة بؤبؤ العين كي يزيد من كمية الضوء المرئي المناسب للرؤية على الشبكية.
ثانيا: يتبع ذلك مع زيادة زمن التعرض أن تكون جرعة الموجات فوق البنفسجية وتحت الحمراء على أجزاء العين كبيرة واكثر من 20% من الضوء الساقط على أجزائها.
إذن نحن أمام خيارين، وهما النظر إلى الشمس من خلال نظارة شمسية تحجب كثيرا من الضوء المرئي، وقليلا من الأشعة فوق البنفسجية وتحت الحمراء، أو أن ننظر إلى ما حولنا دون استخدام النظارة الشمسية حتى ولو كان الضوء شديدا.
في الحالتين فإن الأشعة فوق البنفسجية وتحت الحمراء سوف تسبب ضررا للعين، لكن في الحالة الثانية يكون الضرر أقل لأن العين تكيف نفسها كي تحدد كمية الضوء الساقطة على أجزائها الداخلية، فمثلا تضيق الجفون، ويضيق بؤبؤ العين، كذلك يمكننا الاستدارة عن المناطق المشمسة إلى مناطق الظل. لهذا فإننا ننصح بما يلي:
1- عدم الثقة في أن النظارات الشمسية تحمي العين تماما من أشعة الشمس، ولهذا يجب تقليل استخدامها بقدر الإمكان وخاصة إذا كان ضوء الشمس ليس شديدا.
2- عدم الاهتمام بالمظهر الخارجي والألوان والطراز والسعر للنظارة الشمسية قبل الاهتمام بمقدار نفاذيتها لطيف الشمس والحفاظ على نسبة نفاذية 80% أو أكثر للمنطقة المرئية بالنسبة لباقي طيف الشمس الواقع على العين.
3- اختيار نسبة الفيض الضوئي النسبي للنظارات الشمسية إن أمكن وخاصة في المناطق فوق البنفسجية، واختيار النظارة التي لها نسبة فيض أقل من واحد صحيح.
4- إذا كان وضع الشمس بزاوية قدرها ستون درجة أو أكثر عن وضع التعامد في الظهيرة، فإنه ينصح بعدم استخدام النظارات الشمسية وذلك لتقليل الأضرار الناشئة من الأشعة تحت الحمراء وفوق البنفسجية على أجزاء العين


التصنيفات
الفيزياء الموجية والضوء

الأنعكاس الكلى والزاوية الحرجة

ذا الجزء خاص بالأنعكاس الكلى والزاوية الحرجة
أرجو أن يحقق الفائدة المرجوة
وفى هذه الحالة سوف أقدم لكم المزيد والمزيد
ولاتنسونا بالدعاء
ولكم تحياتى
وإليكم الرابط

http://www.zshare.net/download/51333280b4c24a16


التصنيفات
الفيزياء الموجية والضوء

المجهر الأيوني

Ion microscope

المِجْهَــر الأيـوني ويعرف أيضاً باسم المجهر الشَاردي – الحقلي أداة ذات قدرة هائلة على التكبير. فهو يكبِّر حتى مليوني مرة بدقة فائقة تمكن حتى من رؤية الذرات المفردة. ويستعمل العلماء المجهر الأيوني لدراسة فيزياء وكيمياء السطوح والشوائب في الفلزات. ويستعملونه أيضًا لمعرفة كيفية ترتُّب الذرات الفلزية لتكوين البلورات، وكيف تؤثر الغازات والإشعاعات في مثل هذه البلورات.

والجزء الرئيسي من المجهر الأيوني إبرة سن دقيقة مصنوعة من الفلز المراد فحصه. وهذه الإبرة أدق ألف مرة من رأس الدبوس العادي. وهي موجهة إلى شاشة فلورية مثبتة بالقرب منها. وتُظهر الشاشة أثناء تشغيل المجهر، صورة مكبرة لرأس الإبرة، وهذه الصورة نمط من النقط المضيئة اللامعة. وهذه النقط تُظهر ترتيب ذرات الفلز التي تشكل رأس الإبرة.

يعمل المجهر الأيوني بمبدأ الجذب والطرد الكهربائي. فالإبرة والشاشة محفوظتان في أنبوب زجاجي مفرّغ من الهواء، يحتوي على كمية صغيرة من غاز الهيليوم. وتنشئ فولتية كهربائية تصل إلى 30,000 فولت مجالاً كهربائيًا قويًا ما بين الإبرة والشاشة. والإبرة مشحونة بشحنة موجبة، وتجذب الإلكترونات من ذرات الهيليوم التي تنساق بإتجاه رأس الإبرة. وعندما تفقد ذرات الهيليوم الإلكترونات تصبح أيونات ذات شحنة موجبة. وبسبب ما فيها من شحنة موجبة، تُطْرَد الأيونات من الذرات التي تشكل رأس الإبرة المشحونة بشحنة موجبة. وعندها تطير الأيونات رأسًا إلى الشاشة ذات الشحنة السالبة. وحيثما تتماس مع الشاشة تُحدث توهجًا. وخلال انسياب الأيونات من الإبرة تنتشر على امتداد الشاشة بأكملها. وبهذه الطريقة تتولد صورة مكبرة لسطح رأس الإبرة، مظهرة ترتيب الذرات في البلورة الفلزية.

اخترع المجهر الأيوني إرفين مولر، وهو عالم فيزيائي ألماني هاجر إلى الولايات المتحدة عام 1951م. وقد طوره من مجهر انبعاث المجال الذي اخترعه عام 1936م. وفي هذه الأداة تطبق فولتية سالبة عالية على إبرة فلزية، وتنجذب الإلكترونات المقذوفة من الإبرة إلى شاشة موجبة الشحنة. وتكون الصور الظاهرة على الشاشة مشوشة جدًا فلا تكشف الذرات المفردة. ولكنها تستطيع إعطاء المعلومات حول الطريقة التي تنساب بها الإلكترونات من الفلزات المختلفة. وفي عام 1951م، استخدم مولر المجهر الأيوني لأخذ أول صورة عن ترتيب الذرات على سطح فلز. وفي عام 1954م طوَّر مولر نسخة معدّلة عن المجهر الأيوني، سمّاه مجهر السَّبْر الذري للمجال الأيوني. ويستطيع هذا المجهر تحليل ذرة مفردة على سطح إحدى العينات، ويستطيع أيضًا إزالة الذرات من سطح فلزي وإرسالها إلى جهاز يسمى مكشاف الطيف الكتلي.

المصدر الموسوعه العربية العالمية


التصنيفات
الفيزياء الموجية والضوء

كيف يتكون السراب؟

بسم الله الرحمن الرحيم

كيف يتكون السراب؟؟

يعتبر انتشار الضوء على هيئة خطوط مستقيمة ومتوحدة الخواص إحدى المسلمات الأساسية في علم البصريات، حيث ينتشر الضوء بالوسط الشفاف والمتجانس وموحد الخواص على هيئة خطوط مستقيمة طالما لم يعترضه عائق و يتميز الوسط البصري بوجود معامل يطلق عليه معامل الانكسار الذي يقيس سرعة الضوء بهذا الوسط، فكلما زاد هذا المعامل كلما كانت سرعة انتشار الضوء بالوسط صغيرة. ويتوقف معامل الانكسار للهواء على كثافته وبالتالي على درجة حرارته، فكلما زادت كثافة الهواء كلما انخفض معامل الانكسار ويتكون السراب نتيجة لانكسار الضوء في الهواء. و هو يحدث عندما تكون طبقات الهواء القريبة من سطح الأرض أقل كثافة من طبقات الهواء الأعلى . فعندما تسطع الشمس في أيام الصيف في الصحراء أو على الطرق المرصوفة ترتفع درجة حرارة سطح الأرض و بالتالي درجة حرارة طبقة الهواء الملامسة والقريبة من سطح الأرض فتتمدد و تقل كثافتها وكذلك كثافتها الضوئية ومعامل انكسارها.
وبذلك يزداد معامل انكسار الهواء تدريجيا كلما ارتفعنا إلى أعلى حيث يبرد الهواء.

المصدر
http://www.hazemsakeek.com/vb/