التصنيفات
العلوم الكهربائية

التصوير المجسم Holography

مقدمة:
في الربع الأخير من القرن العشرين ظهر الليزر الذي كان فكرة حالمة تراود العلماء، و عندما ظهر أول مرة ظن بعض العلماء و المفكرين أنه مجرد ترف لا فائدة تطبيقية منه،
و لكن سرعان ما أثبت الليزر أنه يكاد يكون أعظم اختراع وصلت إليه البشرية، إذ اكتسح جميع المجالات التطبيقية و انتشلها من الزمن التقليدي إلى عصر الليزر.
لقد تغلغل الليزر إلى فروع عديدة من العلم، كالطب و الصناعة، و غيرها ليعمها بنفعه الذي سخره الله فيه، فأصبح من الصعب تصور الحياة الحديثة بدون الليزرات، و إن أحد أهم الفروع التي جاء الليزر ليطورها هو التصوير المجسم Holography. الذي ما كان ليكون إلا بوجود الليزر.
و في التصوير المجسم بحر واسع من الفوائد و الفرائد، و هو كالليزر إذ ظن بعض الناس أنه مجرد ترف، إلا أنه أثبت نفسه (نقصد التصوير المجسم) في ميادين عديدة، صناعية
و تجارية، بل و طبية.
في هذا التقرير سوف نتحدث بشكل ميسر عن فكرة عمل التصوير المجسم، و دور الليزر في إنجازه، ثم نعرج على بعض خصائص التصوير المجسم، و نختم بذكر بعض تطبيقاته.
و الله المستعان.

1.مدخل:
في التصوير العادي، يتم تسجيل توزع لمعان الموجات المنبعثة و المنعكسة من الجسم في بعدين، و تتشارك الموجات الناتجة أو المنعكسة من الجسم في تكوين موجة مركبة تسمى موجة الجسم (انظر الشكل)، و باستخدام العدسة المجمعة تُسجَّل صورة الجسم على طبقة حساسة من الألواح الفوتوغرافية الحساسة للضوء.
إن اللوح الفوتوغرافي يسجل سعة الموجة أو بالتحديد كثافة إشعاع الموجة (التي تتناسب مع مربع السعة)، و بعد ذلك يتم تحميض الفيلم لنحصل على صورة للجسم مطبوعة على ورقة.

تعليم_الجزائر

في المقابل فإن التصوير المجسم يعتمد على تسجيل موجة الجسم نفسها، أي سعة الموجة و طورها. حيث تسجل في لوح معين (يسمى هولوغرام) بحيث إذا أضيء فإنه يكون بالإمكان إعادة تكوين صدر الموجة (انظر الشكل) للجسم الأصلي. أي أن الصورة تتكون في الفضاء الثلاثي الأبعاد و ليس على ورقة كالتصوير العادي، و الصورة المشاهدة لا يمكن تمييزها عن الجسم الأصلي أبدا.

و لكن كي يتم تسجيل طور الموجة فنحن بحاجة إلى ضوء أحادي اللون، من مصدر صغير، لكي يكون مترابطا ، و ذلك لكي نحصل على ظاهرة التداخل، و هذا ما أخر ظهور التصوير المجسم إلى وقت ظهور الليزر على الرغم من أن الفكرة موجودة من العام 1948م.

2. كيف نحصل على صورة مجسمة؟

تعليم_الجزائر

يقسم شعاع الليزر إلى حزمتين (كما في الشكل)، و تسلط إحداهما مباشرة على اللوح الفوتوغرافي (الهولوغرام) و تسمى الموجة المرجعية، أما الأخرى فتسلط على الجسم الذي نريد أن نحصل على صورة مجسمة له، بعد ذلك تنعكس (تتشتت) بعض الأشعة التي سقطت على الجسم حاملة تضاريس الجسم بشكل أطوال موجية مختلفة. فالمكان المنخفض في الجسم ستنعكس عنه موجة يكون لها طول موجي أكبر من تلك التي تنعكس عن المكان المرتفع، ثم يصل هذا الشعاع المنعكس إلى اللوح الفوتوغرافي و يتداخل مع الحزمة الأولى (حزمة الموجة المرجعية)، ليُولِّدا نماذج تداخل مستقرة على اللوح الفوتوغرافي (الهولوغرام)، و يتم تخرين هذه النماذج التي تكون مميزة لكل جسم في مستحلب اللوح الفوتوغرافي، فيظهر في الفيلم الذي يسمى بالهولوغرام.

3. ما هو الهولوغرام (أو اللوح الحافظ لنموذج التداخل)؟
يحتوي الهولوغرام (أو اللوح الحافظ لنموذج التداخل) على توزيع معقد من المناطق الشفافة و الداكنة التي تناظر أهداب التداخل المضيئة و المظلمة، و عندما يضاء بشعاع مشابه تماما للشعاع المرجعي الأصلي فإنه الشعاع سوف ينفذ من خلال المناطق الشفافة و يُمتَصّ في المناطق الداكنة بدرجات متفاوتة مكونا بذلك موجة نافذة مركبة، هي الموجة المركبة للجسم الأصل.
و على هذا فإن الحصول على الهولوغرافي يتم على مرحلتين:
الأولى: تسجل فيها أنماط التداخل ثم الحصول على الهولوغرام،
و الثانية: يتم فيها إضاءة الهولوغرام بطريقة معينة بحيث يكون جزء من الشعاع النافذ من الهولوغرام مطابقا لموجة الجسم الأصل، فنرى صورة ماثلة في الهواء أمامنا و كأنها الجسم الأصلي.
فمثلا لو أخذت الصورة لنرد، فإننا سنرى النرد و عندما ندير رؤوسنا نستطيع أن نرى جميع أوجهه و نقرأ الأرقام التي عليها.
و كمثال طريف على ذلك، تم تصوير جريدة و أمامها عدسة مكبرة، فكانت بعض الكلمات تبدو كبيرة، و الباقية عادية أثناء أخذ الصورة، و لكن عندما ظهرت الصورة المجسمة كان بإمكان الناظر أن يقرأ من خلال العدسة جميع الكلمات و هي مكبرة إذا أدار رأسه باتجاه الكلمات الأخرى.

3. أنواع الهولوغرام:
توجد أنواع مختلفة من الهولوغرام، فهناك الهولوغرام الشريحي الرقيق Plane Hologram، و هناك الهولوغرام الحجمي السميك Volume Hologram، و هي إما أن تكون من النوع الامتصاصي absorption أو من النوع الطوري phase.
على الرغم من هذه الاختلافات فهي جميعا تقوم على نفس المبدأ، و هو تسجيل سعة و طور الموجة. و لن نتطرق إلى تفاصيل تلك الأنواع.
كذلك توجد أنواع مختلفة من المواد الحساسة للضوء تستخدم في الهولوغرام، فهي و بشكل عام يجب أن تكون ذات قدرة تحليلية عالية، و يحب أن يكون حجمها حبيبي (أي في حدود 50nm) بحيث تبعد أهداب التداخل عن بعضها بطول موجي واحد.
و على وجه العموم، فإن طبقة الفيلم الحساسة للهولوغرام إما أن تكون من هاليدات الفضة، أو أن تكون من أغشية دايكرومات الجيلاتين (dichromate gelatin).

4. خواص الهولوغرافي و بعض تطبيقاته:
أ. خواص الهولوغرام:

1. إمكانية رؤية الجسم من كل الاتجاهات و رؤية أعماق الفتحات و الثقوب عليه.
2. إن رؤية طرف واحد يخفي الآخر، فإذا نظرنا إلى الجزء الأيمن من الوجه اختفى الأيسر.
3. إذا تحطم الهولوغرام، فإمكاننا استعادة الصورة بتعريض أي شظية (قطعة) منه لشعاع الليزر، و لكن تكون شدة إضاءة الصورة المجسمة ضعيفة.
4. بالإمكان تصوير عدة صور هولوغرافية على لوح واحد و لا يحصل بينها تشويش أو تداخل.
5. وجد أنه بالإمكان تخزين 103 رمز (بت) في كل سنتيمتر مكعب من بلورة فعالة ضوئيا. و هذا يعني تخزين معلومات محتواه في خمسة ملايين مجلد، كل مجلد يحتوي على 200 صفحة، و كل صفحة بها 1000 كلمة و كل كلمة تتكون من سبعة أحرف! و ذلك في بلورة مكعبة لا يزيد حجمها عن عقلة الأصبع.!

ب. تطبيقات:
1. سوف تستخدم هذه الطريقة في الطب البشري، فمثلا تصور العين، لتبرز مجسمة في ثلاثة أبعاد، فنتمكن من رؤية المناطق التشريحية المصابة.
2. تستخدم هذه الطريقة في دراسة التشوه الميكانيكي أو التشققات التي تصيب جيم ما، و فحص الإجهاد لإطارات السيارات.
3. تحمل بطاقات الاعتماد الجديدة شريطا مجسما مطبوعا على ظهرها، و يكون عبارة عن نسق مجسم (و ليس صورة جسم ما) ضد التزوير.
4. يستخدم التصوير المجسم في السلامة النووية حيث يتم تصوير قلب المفاعل فتعطي الصورة المجسمة معلومات كاملة للعلماء عن حالته، و بهذا يستطيعون أن يراقبوا حالة قلب المفاعل دون الحاجة للاقتراب منه حيث إن الإشعاعات تكون خطرة جدا.
5. و تستخدم في حفظ السجلات و التخزين، و ذلك ابتداء من صور أسنان مراجعي عيادات الأسنان إلى التراث الفني و الأدبي و ما إلى ذلك.


التصنيفات
تعلم معنا

كيف يعمل جهاز التصوير بالرنين المغناطيسي ؟


جهاز التصوير بالرنين المغناطيسي هو جهاز تصوير مثل جهاز اشعة اكس او جهاز CT ولكن يستخدم المجال المغناطيسي وامواج الراديو للحصول على الصور دقيقة وتفصيلية وثلاثية الابعاد تمكن الطبيب من رؤية الأجزاء الداخلية لجسم الانسان من عظام ومفاصل والدم وخصوصا الانسجة الرقيقة مثل الدماغ بدون استخدام لاشعة اكس أو الحقن بالاصباغ لتعزيز التباين، ومن خلاله يمكن اكتشاف التغيرات التي قد تطرأ على بعض أعضاء الجسم نتيجة لمرض ما وذلك بالمقارنة مع الأعضاء السليمة. وقد جاء اكتشاف هذا الجهاز في الثالث من يوليو عام 1977، حيث اعتبر حدثاً مذهلاً في عالم الطب الحديث. حيث في ذلك التاريخ تم إجراء أول فحص باستخدام التصوير بالرنين المغناطيسي وقد استغرقت عملية التصوير اكثر من 5 ساعات ولم تكن تلك الصورة واضحة المقارنة بتلك التي نحصل عليها في ايامنا هذه. ويرجع التطور في تكنولوجيا التصوير بالرنين المغناطيسي إلى جهود سبع سنوات للعلماء ريموند دامادين ولاري مانكوف ومايكل جولدسميث. وقد اطلقوا على هذا الجهاز اسم Indomitable في بداية الأمر والذي يعني القوي للدلالة على الجهود المضنية التي بذلوها على مدار السبع سنوات من العمل والبحث لجعل جهاز التصوير بالرنين المغناطيسي حقيقة بعد ان كان مجرد فكرة.

تعليم_الجزائر

التصوير بالرنين المغناطيسي هي تكنولوجيا معقدة وتعرف باسم MRI وهي اختصار للجملة Magnetic Resonance Imaging والتي في الحقيقة تعتمد على الظاهرة الفيزيائية المعروفة بالرنين المغناطيسي النووي والتي من الأجدر ان يكون اسم الجهاز الرنين المغناطيسي النووي ويختصر NMRI ولكن نظراً للواقع الكلمة النووي على المريض او المستمع فإن العلماء فضلوا الاكتفاء بالاسم MRI ، وفي هذه المقالة سوف نتعرف على فكرة عمل هذا الجهاز المتطور وماذا يحدث لجسم الانسان عندما يوجد في داخل هذا الجهاز؟ وماذا نرى بواسطته؟ ولماذا يجب على الشخص ان يبقى ساكنا طوال وقت مكوثه داخل الجهاز اثناء الفحص؟ هذه الاسئلة وغيرها الكثير سنحاول الاجابة عنها في هذه المقالة.

الفكرة والاساس

يبلغ طول جهاز التصوير بالزنين المغناطيسي ( MRI ) 3 أمتار وطوله 2 متر وارتفاعه 2 متر كما يحتوي على انبوبة افقية تمتد خلال مغناطيس، يستلقي المريض على ظهره على سرير خاص يمر ببطء من خلال الأنبوبة داخل المغناطيس. وليس بالضروري ان يتم ادخال جسم المريض بالكامل داخل التجويف المغناطيسي وانما يعتمد ذلك على نوع الفحص المطلوب، وتختلف أجهزة MRI بالحجم والشكل حسب الجزء من الجسم المراد فحصه وتصويره حيث يتطلب وجود ذلك الجزء من الجسم في مركز التجويف المغناطيسي.

تعليم_الجزائر
المجال المغناطيسي

لمعرفة كيف يعمل جهاز MRI يجب ان نركز اولاً على المجال المغناطيسي المستخدم في الجهاز والذي يحتوي اسمه على كلمة مغناطيسي، فمصدر المجال المغناطيسي والذي سنتحدث عنه بعد قليل هو العنصر الرئيسي للجهاز ويشكل اكبر جزء فيه تركيبه. وتصل شدة المجال المغناصيسي المستخدم في الجهاز ما يزيد عن 2 تسلا، والتسلا هي وحدة قياس شدة المجال المغناطيسي والتي تساوي 10000 جاوس وللمعرفة تبلغ شدة المجال المغناطيسي للأرض 0.5 جاوس وهذا دلالة على ضخامة المجال المغناطيسي المستخدم في جهاز NMR .
تعليم_الجزائر ولذلك قبل ادخال المريض والمختصين الى غرفة الجهاز فإنه يتم اجراء فحص دقيق للتخلص من الأشياء المعدنية التي قد يحملها المريض اما الاشخاص الذين زرعت في اجسامهم قطع معدنية لتثبيت العظام فإنه يسمح لهم استخدام الجهاز لان تلك القطع اصبحت ثابتة ولا يمكن ان تتحرك تحت تأثير المجال المغناطيسي وخاصة اذا مر عليها مدة تزيد عن 6 اسابيع واذا وجد نتيجة الفحص احتواء الجسم على اية معادن قابلة للحركة لايسمح للمريض بالتصوير بجهاز MRI ويتم تحويله الى وسيلة تصوير اخرى مثل CAT .

تعليم_الجزائر
صور للدماغ باستخدام جهاز MRI لاعمار مختلفة حيث على اليسار لعمر 25 عام والوسط 86 عام واليمين 78 عام لدماغ شخص مصاب بمرض Alzheimer.

كذلك لا يسمح للمرأة الحامل باستخدام الجهاز لأنه لحتى الأن لم تجري بحوث على تأثير المجال المغناطيسي على الجنين ويخشى من تأثر خلايا الجنين بالمجال المغناطيسي وخصوصا وانها تكون في طور الانقسام والنمو.
أجزاء جهاز MRI
ذكرنا في المقدمة أن المغناطيس يعد الجزء الرئيسي للجهاز وبه تجويف لادخال المريض داخله كما يتضح في الصورة وهناك ثلاث انواع من المغناطيسات التي يمكن استخدامها في اجهزة MRI .

تعليم_الجزائر
تعليم_الجزائر
صورة MRI لدماغ شخص مصاب بالسرطان في الدماغ
أنواع المغناطيس المستخدم

(1) المغناطيس الكهربي: ويحتوي على العديد من لفات من سلك حول اسطوانة فارغة ويمرر بالسلك تيار كهربي مما يعمل على توليد مجال مغناطيسي طالما استمر مرور التيار الكهربي في السلك. يتميز هذا النوع من المغاطيس بقلة تكلفته بالمقارنة بالمغناطيس المصنع من المواد فائقة التوصيل المستخدم في النوع الثالث ولكن يحتاج هذا المغناطيس إلى تيار كهربي كبير تصل قدرته إلى 50,000 وات نظراً لمقاومته المرتفعة نسبياً وهذا يجعل تكاليف التشغيل باهظة جدا وخصوصا أذا تطلب الامر الوصول إلى مجال مغناطيسي شدته 0.3 تسلا.
(2) المغناطيس الدائم: وهو ينتج مجال مغناطيسي طوال الوقت مما يعنى تكلفة تشغيل قليلة ولكن المشكلة تكمن في حجم المغناطيس ووزنه والذي يصل إلى اكثر من 7 طن لتوليد مجال مغناطيسي شدته 0.4 تسلا وهذا سبب في صعوبة تصنيعه واستخدامه.

تعليم_الجزائر
ولكن بالرغم من التكليف الباهظة يعتبر هذا النوع من المغناطسات الانسب والافضل للوصول الى 2 تسلا والذي يعني صور في غاية الوضوح والدقة . قد تتسائل الان ما علاقة المجال المغناطيسي بالتصوير ووضوحه؟ وهذا ما سنجيب عنه ولكن بعد ان نكمل الشرح عن باقي اجزاء الجهاز.

المغناطيس يجعل الجهاز ثقيل جداً فانماذج القديمة منه كان وزنها يصل إلى 8000 كيلو جرام في حين ان الاجهزة الحديثة والمطورة وصل وزنها إلى 4500 كيلو جرام والجدير بالذكر ان ثمن الجهاز يزيد عن المليون دولار.
اذا الجزء الرئيسي من تركيب الجهاز هو المغناطيس الضخم الذي يولد مجالاً مغناطيسياً منتظماً. ولكن هناك نوع اخر من المغناطيس ويعتبر الجزء الثاني من تركيب الجهاز وهو مغناطيس يولد مجالاً مغناطيسيا متزايد بحيث شدته تتغير من 180 جاوس إلى 270 جاوس وهذا لا شك مجال مغناطسي صغير جداً بالمقارنة بما تحدثنا عنه في السابق ولاحقا سيتم شرح وظيفة ودور المجال المغناطيسي المنتظم والمتزايد.

تعليم_الجزائر
صور MRI للاعضاء الداخلية لجسم الانسان

بينما يقوم المجال المغناطيسي المنتظم بغمر كامل جسم المريض فإن المغناطيس الثاني يعمل على توليد مجال مغناطيسي متغير.
اما الجزء الثالث من تركيب الجهاز هو مولد امواج الراديو التي تخترق جسم المريض عند اجراء التصوير. والشكل التالي يوضح الاجزاء الرئيسية لتركيب جهاز MRIوالاجهزة الالكترونية المتحكمة في تشغيله.

تعليم_الجزائر
مخطط للاجزاء الرئيسية لتركيب جهاز MRI والاجهزة الالكترونية المتحكمة في تشغيله

تعليم_الجزائر

كيف نحصل على الصور باستخدام MRI

نعلم ان أية مادة ومنها جسم الانسان يتكون من بلايين الذرات المختلفة، ونواة هذه الذرات تتحرك حركة دورانية حول محور كما في الشكل الموضح ادناه حيث تشكل هذه الحركة شكل مخروط حول محور الدوران.

تعليم_الجزائر
شكل يوضح ذرة الهيدروجين في حركة دورانية حول المجال المغناطيسي

ولنتخيل ان هذه البلايين من الانوية عشوائية في حركتها حيث ان كل نواة تتحرك حول محورها بصورة متسقلة عن النواة الأخرى، وكما نعلم ان الجسم مكون من مواد مختلفة وبالتالي من ذرات مختلفة ولكن جهاز MRI سيركز فقط علي ذرة الهيدروجين حيث انها الذرة المثالية لان النواة تحتوي على بروتون واحد وله عزم مغناطيسي كبير نسبياً وهذا يعني انه عندما تتعرض ذرة الهيدروجين إلى مجال مغناطيسي خارجي فإنها سوف تتأثر به بحيث يصبح اتجاه العزم المغناطيسي في اتجاه المجال المغناطيسي الخارجي او في عكسه. كما يحدث للابرة المغناطيسية في مجال مغناطيسي حيث تدور حول محورها وتستقر في النهاية في اتجاه المجال المغناطيسي كما يمكن اجبارها على ان تستقر في عكس اتجاه المجال المغناطيسي.

تعليم_الجزائر
تعليم_الجزائر
كل بروتونات ذرة الهيدروجين تترتب في اتجاه المجال أو في عكس اتجاه المجال ولا يمكن ان يكون هناك ترتيب اخر. العدد الأعظم من تلك البوترونات عزومها المغناطيسية تلغي بعضها البعض ولا يبقى إلا القليل كما في الشكل البروتون المميز باللون الأحمر فلا يوجد بروتون اخر بعكس اتجاهه ليلاشي عزمه المغناطيسي .
وظيفة امواج الراديو
تعليم_الجزائر تعليم_الجزائر
صورة لدماغ انسان باستخدام MRI وتوضح التباين العالي والوضوح مقارنة بصورة جهاز CT

تعليم_الجزائر

إذا نستنتج من ذلك ما يلي

تعليم_الجزائر تعليم_الجزائر
مخطط توضيحي لمكونات جهاز التصوير باستخدام الرنين المغناطيسي MRI
الحصول على الصور

كما في التصوير باشعة اكس او التصوير بالاشع المقطعية فإنه يتم حقن المريض بمادة لزيادة التباين الذي تعمل على توضيح الجزء المراد تصويره في الجسم وتميزه عن الأعضاء المجاورة كذلك هو نفس الحال في حالة التصوير بجهاز الرنين المغناطيسي ولكن المادة المستخدمة في هذه الحالة تختلف، حيث ان المادة المستخدمة في حالة التصوير باشعة اكس او الاشعة المقطعية التي تستخدم اشعة اكس ايضا فإن المادة المستخدمة تتأين اذا تعرضت لاشعة اكس مما يعني انها سوف توقف اشعة اكس من النفاذ من ذلك العضو الذي يحتوي على مادة التباين. وبهذا نحصل على صورة لذلك العضو عن طريق الظل الذي تم تصويره. ولكن مادة التباين المستخدمة في الرنين المغناطيسي لها وظيفة مختلفة تماماً، فهي تعمل على تغير المجال المغناطيسي الموضعي للانسجة التي تفحص، وتصبح استجابة الانسجة الطبيعية مختلف عن الانسجة المصابة بمرض مما تعطي نتائج مختلفة.

مزايا جهاز MRI
تعليم_الجزائر
عيوب جهاز MRI
تعليم_الجزائر
تطورات مستقبلية متوقع لجهاز MRI

تعد اجهزة MRI في اوجها فهي عمرها لا يتعد 20 عاما مقارنة باجهزة اشعة اكس التي مر عليها اكثر من 100 عام ولذلك التطوير على اجهزة MRI يعد محدودا لانها في افضل صورة ممكنة وتعطى نتائج ممتازة وصور دقيقة وواضحة. ولكن من الممكن ان يتم تطوير أجزة MRI اصغر حجماً ومخصصة لوظيفة مخددة مثل ان نجد اجهزة رنين مغناطيسي مخصصة لتصوير بعض اعضاء الجسم مثل تصوير الذراع أو العمود الفقري او الركبة أو الرقبة أو التجويف البطني أو القفص الصدري او الدماغ. كذلك يعمل العلماء على استخدام اجهزة الرنين المغناطيسي على تصوير ذماغ الانسان اثناء قيامه باداء بعض المهام مثل الضغط على كرة او النظر إلى صورة لمعرفة كيف يعمل الدماغ. وبالتالي فإن مستقبل اجهزة الرنين المغناطيسي موجهة إلى الابحاث العلمية التي يمكن ان تتم باستخدامه لفهم العديد من اسرار جسم الانسان.